結果

問題 No.2428 Returning Shuffle
ユーザー k1suxuk1suxu
提出日時 2023-08-18 22:45:09
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 231 ms / 2,000 ms
コード長 7,599 bytes
コンパイル時間 3,166 ms
コンパイル使用メモリ 261,820 KB
実行使用メモリ 27,468 KB
最終ジャッジ日時 2024-05-06 05:08:10
合計ジャッジ時間 5,926 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 111 ms
19,924 KB
testcase_01 AC 231 ms
19,788 KB
testcase_02 AC 223 ms
19,792 KB
testcase_03 AC 23 ms
12,236 KB
testcase_04 AC 23 ms
12,108 KB
testcase_05 AC 23 ms
12,236 KB
testcase_06 AC 23 ms
12,236 KB
testcase_07 AC 23 ms
12,108 KB
testcase_08 AC 23 ms
12,108 KB
testcase_09 AC 23 ms
12,236 KB
testcase_10 AC 25 ms
12,104 KB
testcase_11 AC 23 ms
12,112 KB
testcase_12 AC 24 ms
12,108 KB
testcase_13 AC 23 ms
12,232 KB
testcase_14 AC 22 ms
12,108 KB
testcase_15 AC 24 ms
12,108 KB
testcase_16 AC 21 ms
12,112 KB
testcase_17 AC 23 ms
12,108 KB
testcase_18 AC 22 ms
12,028 KB
testcase_19 AC 142 ms
19,916 KB
testcase_20 AC 150 ms
19,912 KB
testcase_21 AC 24 ms
12,236 KB
testcase_22 AC 22 ms
12,108 KB
testcase_23 AC 22 ms
12,104 KB
testcase_24 AC 152 ms
27,468 KB
testcase_25 AC 147 ms
27,340 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #pragma GCC target("avx")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>
using namespace std;

#define rep(i,n) for(int i = 0; i < (int)n; i++)
#define FOR(n) for(int i = 0; i < (int)n; i++)
#define repi(i,a,b) for(int i = (int)a; i < (int)b; i++)
#define all(x) x.begin(),x.end()
//#define mp make_pair
#define vi vector<int>
#define vvi vector<vi>
#define vvvi vector<vvi>
#define vvvvi vector<vvvi>
#define pii pair<int,int>
#define vpii vector<pair<int,int>>

template<typename T>
void chmax(T &a, const T &b) {a = (a > b? a : b);}
template<typename T>
void chmin(T &a, const T &b) {a = (a < b? a : b);}

using ll = long long;
using ld = long double;
using ull = unsigned long long;

const ll INF = numeric_limits<long long>::max() / 2;
const ld pi = 3.1415926535897932384626433832795028;
const ll mod = 998244353;
int dx[] = {1, 0, -1, 0, -1, -1, 1, 1};
int dy[] = {0, 1, 0, -1, -1, 1, -1, 1};

#define int long long

template<long long MOD>
struct Modular_Int {
    long long x;

    Modular_Int() = default;
    Modular_Int(long long x_) : x(x_ >= 0? x_%MOD : (MOD-(-x_)%MOD)%MOD) {}

    long long val() const {
        return (x%MOD+MOD)%MOD;
    }
    long long get_mod() const {
        return MOD;
    }

    Modular_Int<MOD>& operator^=(long long d)  {
        Modular_Int<MOD> ret(1);
        long long nx = x;
        while(d) {
            if(d&1) ret *= nx;
            (nx *= nx) %= MOD;
            d >>= 1;
        }
        *this = ret;
        return *this;
    }
    Modular_Int<MOD> operator^(long long d) const {return Modular_Int<MOD>(*this) ^= d;}
    Modular_Int<MOD> pow(long long d) const {return Modular_Int<MOD>(*this) ^= d;}
    
    //use this basically
    Modular_Int<MOD> inv() const {
        return Modular_Int<MOD>(*this) ^ (MOD-2);
    }
    //only if the module number is not prime
    //Don't use. This is broken.
    // Modular_Int<MOD> inv() const {
    //     long long a = (x%MOD+MOD)%MOD, b = MOD, u = 1, v = 0;
    //     while(b) {
    //         long long t = a/b;
    //         a -= t*b, swap(a, b);
    //         u -= t*v, swap(u, v);
    //     }
    //     return Modular_Int<MOD>(u);
    // }

    Modular_Int<MOD>& operator+=(const Modular_Int<MOD> other) {
        if((x += other.x) >= MOD) x -= MOD;
        return *this;
    }
    Modular_Int<MOD>& operator-=(const Modular_Int<MOD> other) {
        if((x -= other.x) < 0) x += MOD;
        return *this;
    }
    Modular_Int<MOD>& operator*=(const Modular_Int<MOD> other) {
        long long z = x;
        z *= other.x;
        z %= MOD;
        x = z;
        if(x < 0) x += MOD;
        return *this;
    }
    Modular_Int<MOD>& operator/=(const Modular_Int<MOD> other) {
        return *this = *this * other.inv();
    }
    Modular_Int<MOD>& operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }
    Modular_Int<MOD>& operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }
    
    Modular_Int<MOD> operator+(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) += other;}
    Modular_Int<MOD> operator-(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) -= other;}
    Modular_Int<MOD> operator*(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) *= other;}
    Modular_Int<MOD> operator/(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) /= other;}
    
    Modular_Int<MOD>& operator+=(const long long other) {Modular_Int<MOD> other_(other); *this += other_; return *this;}
    Modular_Int<MOD>& operator-=(const long long other) {Modular_Int<MOD> other_(other); *this -= other_; return *this;}
    Modular_Int<MOD>& operator*=(const long long other) {Modular_Int<MOD> other_(other); *this *= other_; return *this;}
    Modular_Int<MOD>& operator/=(const long long other) {Modular_Int<MOD> other_(other); *this /= other_; return *this;}
    Modular_Int<MOD> operator+(const long long other) const {return Modular_Int<MOD>(*this) += other;}
    Modular_Int<MOD> operator-(const long long other) const {return Modular_Int<MOD>(*this) -= other;}
    Modular_Int<MOD> operator*(const long long other) const {return Modular_Int<MOD>(*this) *= other;}
    Modular_Int<MOD> operator/(const long long other) const {return Modular_Int<MOD>(*this) /= other;}

    bool operator==(const Modular_Int<MOD> other) const {return (*this).val() == other.val();}
    bool operator!=(const Modular_Int<MOD> other) const {return (*this).val() != other.val();}
    bool operator==(const long long other) const {return (*this).val() == other;}
    bool operator!=(const long long other) const {return (*this).val() != other;}

    Modular_Int<MOD> operator-() const {return Modular_Int<MOD>(0LL)-Modular_Int<MOD>(*this);}

    // friend constexpr istream& operator>>(istream& is, mint& x) noexcept {
    //     long long X;
    //     is >> X;
    //     x = X;
    //     return is;
    // }
    // friend constexpr ostream& operator<<(ostream& os, mint& x) {
    //     os << x.val();
    //     return os;
    // }
};

// const long long MOD_VAL = 1e9+7;
const long long MOD_VAL = 998244353;
using mint = Modular_Int<MOD_VAL>;

struct fast_prime_factorize {
private:
    vector<int> MinFactor;
    vector<bool> IsPrime;
public:
    vector<int> primes;
    
    fast_prime_factorize(const int MAXN) : MinFactor(MAXN), IsPrime(MAXN) {
        for (int i = 0; i < MAXN; ++i) IsPrime[i] = true, MinFactor[i] = -1;
        IsPrime[0] = false; IsPrime[1] = false; 
        MinFactor[0] = 0; MinFactor[1] = 1;
        for (int i = 2; i < MAXN; ++i) {
            if (IsPrime[i]) {
                MinFactor[i] = i;
                primes.push_back(i);
                for (int j = i*2; j < MAXN; j += i) {
                    IsPrime[j] = false;
                    if (MinFactor[j] == -1) MinFactor[j] = i;
                }
            }
        }
    }

    vector<pair<int,int> > factorize(int n) {
        vector<pair<int,int> > res;
        while (n != 1) {
            int prime = MinFactor[n];
            int exp = 0;
            while (MinFactor[n] == prime) {
                ++exp;
                n /= prime;
            }
            res.push_back(make_pair(prime, exp));
        }
        return res;
    }

    bool is_prime(int n) {
        return IsPrime[n];
    }
    vector<int> All_Min_Factor() {
        return MinFactor;
    }
    vector<int> All_Primes() {
        return primes;
    }
}sieve(1000100);

void solve() {
    int n, m;
    cin >> n >> m;
    vi order(n);
    iota(all(order), 0);

    // composition
    FOR(m) {
        int t;
        cin >> t;
        vi s(t);
        rep(j, t) {
            cin >> s[j];
            --s[j];
        }

        int lst = order[s.back()];
        for(int j = t-1; j > 0; --j) order[s[j]] = order[s[j-1]];
        order[s[0]] = lst;
    }

    // decompose
    int circle = 0;
    vector<bool> done(n, false);
    auto dfs = [&](int v, auto self) -> void {
        done[v] = true;
        ++circle;
        if(!done[order[v]]) {
            self(order[v], self);
        }
    };

    map<int, int> mp;

    FOR(n) {
        if(!done[i]) {
            circle = 0;
            dfs(i, dfs);
            vpii p = sieve.factorize(circle);
            for(auto e : p) {
                chmax(mp[e.first], e.second);
            }
        }
    }

    mint ans = 1;
    for(auto e : mp) ans *= mint(e.first).pow(e.second);
    cout << ans.val() << endl;
}

signed main() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    solve();
    return 0;
}
0