結果

問題 No.2428 Returning Shuffle
ユーザー k1suxuk1suxu
提出日時 2023-08-18 22:45:09
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 283 ms / 2,000 ms
コード長 7,599 bytes
コンパイル時間 3,700 ms
コンパイル使用メモリ 261,816 KB
実行使用メモリ 27,468 KB
最終ジャッジ日時 2024-11-28 08:54:44
合計ジャッジ時間 6,891 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// #pragma GCC target("avx")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
#define rep(i,n) for(int i = 0; i < (int)n; i++)
#define FOR(n) for(int i = 0; i < (int)n; i++)
#define repi(i,a,b) for(int i = (int)a; i < (int)b; i++)
#define all(x) x.begin(),x.end()
//#define mp make_pair
#define vi vector<int>
#define vvi vector<vi>
#define vvvi vector<vvi>
#define vvvvi vector<vvvi>
#define pii pair<int,int>
#define vpii vector<pair<int,int>>
template<typename T>
void chmax(T &a, const T &b) {a = (a > b? a : b);}
template<typename T>
void chmin(T &a, const T &b) {a = (a < b? a : b);}
using ll = long long;
using ld = long double;
using ull = unsigned long long;
const ll INF = numeric_limits<long long>::max() / 2;
const ld pi = 3.1415926535897932384626433832795028;
const ll mod = 998244353;
int dx[] = {1, 0, -1, 0, -1, -1, 1, 1};
int dy[] = {0, 1, 0, -1, -1, 1, -1, 1};
#define int long long
template<long long MOD>
struct Modular_Int {
long long x;
Modular_Int() = default;
Modular_Int(long long x_) : x(x_ >= 0? x_%MOD : (MOD-(-x_)%MOD)%MOD) {}
long long val() const {
return (x%MOD+MOD)%MOD;
}
long long get_mod() const {
return MOD;
}
Modular_Int<MOD>& operator^=(long long d) {
Modular_Int<MOD> ret(1);
long long nx = x;
while(d) {
if(d&1) ret *= nx;
(nx *= nx) %= MOD;
d >>= 1;
}
*this = ret;
return *this;
}
Modular_Int<MOD> operator^(long long d) const {return Modular_Int<MOD>(*this) ^= d;}
Modular_Int<MOD> pow(long long d) const {return Modular_Int<MOD>(*this) ^= d;}
//use this basically
Modular_Int<MOD> inv() const {
return Modular_Int<MOD>(*this) ^ (MOD-2);
}
//only if the module number is not prime
//Don't use. This is broken.
// Modular_Int<MOD> inv() const {
// long long a = (x%MOD+MOD)%MOD, b = MOD, u = 1, v = 0;
// while(b) {
// long long t = a/b;
// a -= t*b, swap(a, b);
// u -= t*v, swap(u, v);
// }
// return Modular_Int<MOD>(u);
// }
Modular_Int<MOD>& operator+=(const Modular_Int<MOD> other) {
if((x += other.x) >= MOD) x -= MOD;
return *this;
}
Modular_Int<MOD>& operator-=(const Modular_Int<MOD> other) {
if((x -= other.x) < 0) x += MOD;
return *this;
}
Modular_Int<MOD>& operator*=(const Modular_Int<MOD> other) {
long long z = x;
z *= other.x;
z %= MOD;
x = z;
if(x < 0) x += MOD;
return *this;
}
Modular_Int<MOD>& operator/=(const Modular_Int<MOD> other) {
return *this = *this * other.inv();
}
Modular_Int<MOD>& operator++() {
x++;
if (x == MOD) x = 0;
return *this;
}
Modular_Int<MOD>& operator--() {
if (x == 0) x = MOD;
x--;
return *this;
}
Modular_Int<MOD> operator+(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) += other;}
Modular_Int<MOD> operator-(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) -= other;}
Modular_Int<MOD> operator*(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) *= other;}
Modular_Int<MOD> operator/(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) /= other;}
Modular_Int<MOD>& operator+=(const long long other) {Modular_Int<MOD> other_(other); *this += other_; return *this;}
Modular_Int<MOD>& operator-=(const long long other) {Modular_Int<MOD> other_(other); *this -= other_; return *this;}
Modular_Int<MOD>& operator*=(const long long other) {Modular_Int<MOD> other_(other); *this *= other_; return *this;}
Modular_Int<MOD>& operator/=(const long long other) {Modular_Int<MOD> other_(other); *this /= other_; return *this;}
Modular_Int<MOD> operator+(const long long other) const {return Modular_Int<MOD>(*this) += other;}
Modular_Int<MOD> operator-(const long long other) const {return Modular_Int<MOD>(*this) -= other;}
Modular_Int<MOD> operator*(const long long other) const {return Modular_Int<MOD>(*this) *= other;}
Modular_Int<MOD> operator/(const long long other) const {return Modular_Int<MOD>(*this) /= other;}
bool operator==(const Modular_Int<MOD> other) const {return (*this).val() == other.val();}
bool operator!=(const Modular_Int<MOD> other) const {return (*this).val() != other.val();}
bool operator==(const long long other) const {return (*this).val() == other;}
bool operator!=(const long long other) const {return (*this).val() != other;}
Modular_Int<MOD> operator-() const {return Modular_Int<MOD>(0LL)-Modular_Int<MOD>(*this);}
// friend constexpr istream& operator>>(istream& is, mint& x) noexcept {
// long long X;
// is >> X;
// x = X;
// return is;
// }
// friend constexpr ostream& operator<<(ostream& os, mint& x) {
// os << x.val();
// return os;
// }
};
// const long long MOD_VAL = 1e9+7;
const long long MOD_VAL = 998244353;
using mint = Modular_Int<MOD_VAL>;
struct fast_prime_factorize {
private:
vector<int> MinFactor;
vector<bool> IsPrime;
public:
vector<int> primes;
fast_prime_factorize(const int MAXN) : MinFactor(MAXN), IsPrime(MAXN) {
for (int i = 0; i < MAXN; ++i) IsPrime[i] = true, MinFactor[i] = -1;
IsPrime[0] = false; IsPrime[1] = false;
MinFactor[0] = 0; MinFactor[1] = 1;
for (int i = 2; i < MAXN; ++i) {
if (IsPrime[i]) {
MinFactor[i] = i;
primes.push_back(i);
for (int j = i*2; j < MAXN; j += i) {
IsPrime[j] = false;
if (MinFactor[j] == -1) MinFactor[j] = i;
}
}
}
}
vector<pair<int,int> > factorize(int n) {
vector<pair<int,int> > res;
while (n != 1) {
int prime = MinFactor[n];
int exp = 0;
while (MinFactor[n] == prime) {
++exp;
n /= prime;
}
res.push_back(make_pair(prime, exp));
}
return res;
}
bool is_prime(int n) {
return IsPrime[n];
}
vector<int> All_Min_Factor() {
return MinFactor;
}
vector<int> All_Primes() {
return primes;
}
}sieve(1000100);
void solve() {
int n, m;
cin >> n >> m;
vi order(n);
iota(all(order), 0);
// composition
FOR(m) {
int t;
cin >> t;
vi s(t);
rep(j, t) {
cin >> s[j];
--s[j];
}
int lst = order[s.back()];
for(int j = t-1; j > 0; --j) order[s[j]] = order[s[j-1]];
order[s[0]] = lst;
}
// decompose
int circle = 0;
vector<bool> done(n, false);
auto dfs = [&](int v, auto self) -> void {
done[v] = true;
++circle;
if(!done[order[v]]) {
self(order[v], self);
}
};
map<int, int> mp;
FOR(n) {
if(!done[i]) {
circle = 0;
dfs(i, dfs);
vpii p = sieve.factorize(circle);
for(auto e : p) {
chmax(mp[e.first], e.second);
}
}
}
mint ans = 1;
for(auto e : mp) ans *= mint(e.first).pow(e.second);
cout << ans.val() << endl;
}
signed main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0