結果
問題 | No.2439 Fragile Apple Tree |
ユーザー | tokusakurai |
提出日時 | 2023-08-18 23:30:42 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,917 ms / 10,000 ms |
コード長 | 24,600 bytes |
コンパイル時間 | 3,414 ms |
コンパイル使用メモリ | 238,452 KB |
実行使用メモリ | 98,620 KB |
最終ジャッジ日時 | 2024-11-28 12:51:22 |
合計ジャッジ時間 | 33,208 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 851 ms
71,008 KB |
testcase_01 | AC | 1,706 ms
92,012 KB |
testcase_02 | AC | 1,652 ms
92,004 KB |
testcase_03 | AC | 587 ms
98,544 KB |
testcase_04 | AC | 915 ms
98,620 KB |
testcase_05 | AC | 1,512 ms
91,940 KB |
testcase_06 | AC | 1,647 ms
92,128 KB |
testcase_07 | AC | 1,917 ms
93,180 KB |
testcase_08 | AC | 1,913 ms
93,068 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 1,848 ms
89,868 KB |
testcase_15 | AC | 1,187 ms
91,960 KB |
testcase_16 | AC | 1,618 ms
92,044 KB |
testcase_17 | AC | 1,594 ms
91,900 KB |
testcase_18 | AC | 713 ms
69,808 KB |
testcase_19 | AC | 535 ms
36,436 KB |
testcase_20 | AC | 240 ms
31,252 KB |
testcase_21 | AC | 53 ms
5,248 KB |
testcase_22 | AC | 889 ms
49,416 KB |
testcase_23 | AC | 372 ms
25,396 KB |
testcase_24 | AC | 466 ms
34,028 KB |
testcase_25 | AC | 494 ms
58,976 KB |
testcase_26 | AC | 599 ms
66,216 KB |
testcase_27 | AC | 428 ms
46,632 KB |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 2 ms
5,248 KB |
testcase_30 | AC | 2 ms
5,248 KB |
testcase_31 | AC | 895 ms
93,548 KB |
testcase_32 | AC | 901 ms
93,416 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> using minheap = priority_queue<T, vector<T>, greater<T>>; template <typename T> using maxheap = priority_queue<T>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } int pct(int x) { return __builtin_popcount(x); } int pct(ll x) { return __builtin_popcountll(x); } int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename T> void reorder(vector<T> &a, const vector<int> &ord) { int n = a.size(); vector<T> b(n); for (int i = 0; i < n; i++) b[i] = a[ord[i]]; swap(a, b); } template <typename T> T floor(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? x / y : (x - y + 1) / y); } template <typename T> T ceil(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? (x + y - 1) / y : x / y); } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); cerr << fixed << setprecision(15); } } io_setup; constexpr int inf = (1 << 30) - 1; constexpr ll INF = (1LL << 60) - 1; // constexpr int MOD = 1000000007; constexpr int MOD = 998244353; // sum template <typename T> struct Plus_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return a + b; }; static const V id; }; template <typename T> const T Plus_Monoid<T>::id = 0; // prod template <typename T> struct Product_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return a * b; }; static const V id; }; template <typename T> const T Product_Monoid<T>::id = 1; // min template <typename T> struct Min_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return min(a, b); }; static const V id; }; template <typename T> constexpr T Min_Monoid<T>::id = numeric_limits<T>::max() / 2; // max template <typename T> struct Max_Monoid { using V = T; static constexpr V merge(V a, V b) { return max(a, b); }; static const V id; }; template <typename T> constexpr T Max_Monoid<T>::id = -(numeric_limits<T>::max() / 2); // 代入 template <typename T> struct Update_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { if (a == id) return b; if (b == id) return a; return b; } static const V id; }; template <typename T> constexpr T Update_Monoid<T>::id = numeric_limits<T>::max(); // min count (T:最大値の型、S:個数の型) template <typename T, typename S> struct Min_Count_Monoid { using V = pair<T, S>; static constexpr V merge(const V &a, const V &b) { if (a.first < b.first) return a; if (a.first > b.first) return b; return V(a.first, a.second + b.second); } static const V id; }; template <typename T, typename S> constexpr pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max() / 2, 0); // max count (T:最大値の型、S:個数の型) template <typename T, typename S> struct Max_Count_Monoid { using V = pair<T, S>; static constexpr V merge(const V &a, const V &b) { if (a.first > b.first) return a; if (a.first < b.first) return b; return V(a.first, a.second + b.second); } static const V id; }; template <typename T, typename S> constexpr pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(-(numeric_limits<T>::max() / 2), 0); // 一次関数 ax+b の合成 (左から順に作用) template <typename T> struct Affine_Monoid { using V = pair<T, T>; static constexpr V merge(const V &a, const V &b) { return V(a.first * b.first, a.second * b.first + b.second); }; static const V id; }; template <typename T> const pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0); // モノイドの直積 template <typename Monoid_1, typename Monoid_2> struct Cartesian_Product_Monoid { using V1 = typename Monoid_1::V; using V2 = typename Monoid_2::V; using V = pair<V1, V2>; static constexpr V merge(const V &a, const V &b) { return V(Monoid_1::merge(a.first, b.first), Monoid_2::merge(a.second, b.second)); } static const V id; }; template <typename Monoid_1, typename Monoid_2> const pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id); // range add range min template <typename T> struct Min_Plus_Acted_Monoid { using Monoid = Min_Monoid<T>; using Operator = Plus_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return a + b; }; }; // range add range max template <typename T> struct Max_Plus_Acted_Monoid { using Monoid = Max_Monoid<T>; using Operator = Plus_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return a + b; }; }; // range add range min count (T:最小値の型、S:個数の型) template <typename T, typename S> struct Min_Count_Add_Acted_Monoid { using Monoid = Min_Count_Monoid<T, S>; using Operator = Plus_Monoid<T>; using M = pair<T, S>; using O = T; static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); }; }; // range add range max count (T:最大値の型、S:個数の型) template <typename T, typename S> struct Max_Count_Add_Acted_Monoid { using Monoid = Max_Count_Monoid<T, S>; using Operator = Plus_Monoid<T>; using M = pair<T, S>; using O = T; static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); }; }; // range add range sum template <typename T> struct Plus_Plus_Acted_Monoid { using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>; using Operator = Plus_Monoid<T>; using M = pair<T, int>; using O = T; static constexpr M merge(const M &a, const O &b) { return M(a.first + b * a.second, a.second); } }; // range update range sum template <typename T> struct Plus_Update_Acted_Monoid { using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>; using Operator = Update_Monoid<T>; using M = pair<T, int>; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : M(b * a.second, a.second); } }; // range update range min template <typename T> struct Min_Update_Acted_Monoid { using Monoid = Min_Monoid<T>; using Operator = Update_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; } }; // range update range max template <typename T> struct Max_Update_Acted_Monoid { using Monoid = Max_Monoid<T>; using Operator = Update_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; } }; // range affine range sum template <typename T> struct Plus_Affine_Acted_Monoid { using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>; using Operator = Affine_Monoid<T>; using M = pair<T, T>; using O = pair<T, T>; static constexpr M merge(const M &a, const O &b) { return M(b.first * a.first + b.second * a.second, a.second); }; }; template <typename Acted_Monoid> struct Lazy_Segment_Tree { using Monoid = typename Acted_Monoid::Monoid; using Operator = typename Acted_Monoid::Operator; using M = typename Monoid::V; using O = typename Operator::V; int n, m, height; vector<M> seg; vector<O> lazy; // f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a // h(h(p,q),r) = h(p,h(q,r)), h(e2,p) = h(p,e2) = p // g(f(a,b),p) = f(g(a,p),g(b,p)) // g(g(a,p),q) = g(a,h(p,q)) Lazy_Segment_Tree(const vector<M> &v) : n(v.size()) { m = 1, height = 0; while (m < n) m <<= 1, height++; seg.assign(2 * m, Monoid::id), lazy.assign(2 * m, Operator::id); copy(begin(v), end(v), begin(seg) + m); build(); } Lazy_Segment_Tree(int n, M x = Monoid::id) : Lazy_Segment_Tree(vector<M>(n, x)) {} void set(int i, const M &x) { seg[m + i] = x; } void build() { for (int i = m - 1; i > 0; i--) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]); } inline M reflect(int i) const { return Acted_Monoid::merge(seg[i], lazy[i]); } inline void recalc(int i) { while (i >>= 1) seg[i] = Monoid::merge(reflect(2 * i), reflect(2 * i + 1)); } inline void eval(int i) { lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]); lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]); seg[i] = reflect(i); lazy[i] = Operator::id; } inline void thrust(int i) { for (int j = height; j > 0; j--) eval(i >> j); } void update(int l, int r, const O &x) { l = max(l, 0), r = min(r, n); if (l >= r) return; l += m, r += m; thrust(l), thrust(r - 1); int a = l, b = r; while (l < r) { if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++; if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x); l >>= 1, r >>= 1; } recalc(a), recalc(b - 1); } M query(int l, int r) { l = max(l, 0), r = min(r, n); if (l >= r) return Monoid::id; l += m, r += m; thrust(l), thrust(r - 1); M L = Monoid::id, R = Monoid::id; while (l < r) { if (l & 1) L = Monoid::merge(L, reflect(l++)); if (r & 1) R = Monoid::merge(reflect(--r), R); l >>= 1, r >>= 1; } return Monoid::merge(L, R); } M operator[](int i) { return query(i, i + 1); } template <typename C> int find_subtree(int i, const C &check, M &x, int type) { while (i < m) { eval(i); M nxt = type ? Monoid::merge(reflect(2 * i + type), x) : Monoid::merge(x, reflect(2 * i + type)); if (check(nxt)) { i = 2 * i + type; } else { x = nxt; i = 2 * i + (type ^ 1); } } return i - m; } // check(区間 [l,r] での演算結果) を満たす最小の r (なければ n) template <typename C> int find_first(int l, const C &check) { M L = Monoid::id; int a = l + m, b = 2 * m; thrust(a); while (a < b) { if (a & 1) { M nxt = Monoid::merge(L, reflect(a)); if (check(nxt)) return find_subtree(a, check, L, 0); L = nxt; a++; } a >>= 1, b >>= 1; } return n; } // check(区間 [l,r) での演算結果) を満たす最大の l (なければ -1) template <typename C> int find_last(int r, const C &check) { M R = Monoid::id; int a = m, b = r + m; thrust(b - 1); while (a < b) { if ((b & 1) || a == 1) { M nxt = Monoid::merge(reflect(--b), R); if (check(nxt)) return find_subtree(b, check, R, 1); R = nxt; } a >>= 1, b >>= 1; } return -1; } }; template <bool directed = false> struct Euler_Tour_Subtree { struct edge { int to, id; edge(int to, int id) : to(to), id(id) {} }; vector<vector<edge>> es; vector<int> l, r; // 部分木 i は区間 [l[i],r[i]) に対応する。また、頂点 i は l[i] に対応する。 const int n; int m; Euler_Tour_Subtree(int n) : es(n), l(n), r(n), n(n), m(0) {} void add_edge(int from, int to) { es[from].emplace_back(to, m); if (!directed) es[to].emplace_back(from, m); m++; } void _dfs(int now, int pre, int &cnt) { l[now] = cnt++; for (auto &e : es[now]) { if (e.to != pre) _dfs(e.to, now, cnt); } r[now] = cnt; } void build(int root = 0) { int cnt = 0; _dfs(root, -1, cnt); } }; template <bool directed = false> struct Heavy_Light_Decomposition { struct edge { int to, id; edge(int to, int id) : to(to), id(id) {} }; vector<vector<edge>> es; vector<int> par, si, depth; vector<int> root; // 属する連結成分の根 vector<int> id_v, id_e; // 各頂点、各辺が一列に並べたときに何番目に相当するか (辺の番号は 1,2,...,n-1 となることに注意) vector<int> vs; const int n; int m; Heavy_Light_Decomposition(int n) : es(n), par(n), si(n, 1), depth(n, -1), root(n), id_v(n), id_e(n - 1), vs(n), n(n), m(0) {} void add_edge(int from, int to) { es[from].emplace_back(to, m); if (!directed) es[to].emplace_back(from, m); m++; } int bfs_sz(int r, int s) { int t = s; queue<int> que; que.push(r); depth[r] = 0; vs[t++] = r; while (!que.empty()) { int i = que.front(); que.pop(); for (auto &e : es[i]) { if (depth[e.to] != -1) continue; par[e.to] = i; depth[e.to] = depth[i] + 1; vs[t++] = e.to; que.push(e.to); } } for (int i = t - 1; i >= s; i--) { for (auto &e : es[vs[i]]) { if (e.to != par[vs[i]]) si[vs[i]] += si[e.to]; } } return t; } void bfs_hld(int r, int s) { id_v[r] = s; root[r] = r; queue<int> que; que.push(r); while (!que.empty()) { int i = que.front(); que.pop(); edge heavy = {-1, -1}; int ma = 0; for (auto &e : es[i]) { if (e.to == par[i]) continue; if (ma < si[e.to]) ma = si[e.to], heavy = e; } int cnt = id_v[i] + 1; if (heavy.id != -1) { root[heavy.to] = root[i]; id_e[heavy.id] = cnt; id_v[heavy.to] = cnt; que.push(heavy.to); cnt += si[heavy.to]; } for (auto &e : es[i]) { if (e.to == par[i] || e.id == heavy.id) continue; root[e.to] = e.to; id_e[e.id] = cnt; id_v[e.to] = cnt; que.push(e.to); cnt += si[e.to]; } } } void decompose() { int s = 0; for (int i = 0; i < n; i++) { if (depth[i] != -1) continue; int t = bfs_sz(i, s); bfs_hld(i, s); s = t; } for (int i = 0; i < n; i++) vs[id_v[i]] = i; } int lca(int u, int v) { while (root[u] != root[v]) { if (depth[root[u]] > depth[root[v]]) swap(u, v); v = par[root[v]]; } if (depth[u] > depth[v]) swap(u, v); return u; } int dist(int u, int v) { return depth[u] + depth[v] - depth[lca(u, v)] * 2; } // u の k 個前の祖先 int ancestor(int u, int k) { if (k > depth[u]) return -1; while (k > 0) { int r = root[u]; int l = depth[u] - depth[r]; if (k <= l) return vs[id_v[r] + l - k]; u = par[r]; k -= l + 1; } return u; } // u から v の方向へ k 回移動 int move(int u, int v, int k) { int w = lca(u, v); int l = depth[u] + depth[v] - depth[w] * 2; if (k > l) return -1; if (k <= depth[u] - depth[w]) return ancestor(u, k); return ancestor(v, l - k); } // パスに対応する区間たちを列挙 vector<pair<int, int>> get_path(int u, int v, bool use_edge = false) { vector<pair<int, int>> ret; while (root[u] != root[v]) { if (depth[root[u]] > depth[root[v]]) swap(u, v); ret.emplace_back(id_v[root[v]], id_v[v] + 1); v = par[root[v]]; } if (depth[u] > depth[v]) swap(u, v); ret.emplace_back(id_v[u] + use_edge, id_v[v] + 1); return ret; } // クエリが非可換の場合 (l > r なら子から親方向で [r,l)、l < r なら親から子方向で [l,r)) vector<pair<int, int>> get_path_noncommutative(int u, int v, bool use_edge = false) { vector<pair<int, int>> l, r; while (root[u] != root[v]) { if (depth[root[u]] > depth[root[v]]) { l.emplace_back(id_v[u] + 1, id_v[root[u]]); u = par[root[u]]; } else { r.emplace_back(id_v[root[v]], id_v[v] + 1); v = par[root[v]]; } } if (depth[u] > depth[v]) { l.emplace_back(id_v[u] + 1, id_v[v] + use_edge); } else { r.emplace_back(id_v[u] + use_edge, id_v[v] + 1); } reverse(begin(r), end(r)); for (auto &e : r) l.push_back(e); return l; } }; template <typename Acted_Monoid, bool use_edge, bool directed = false> struct HLD_Lazy_Segment_Tree : Heavy_Light_Decomposition<directed> { using HLD = Heavy_Light_Decomposition<directed>; using Monoid = typename Acted_Monoid::Monoid; using Operator = typename Acted_Monoid::Operator; using M = typename Monoid::V; using O = typename Operator::V; Lazy_Segment_Tree<Acted_Monoid> seg; vector<M> v; const int n; HLD_Lazy_Segment_Tree(const vector<M> &v) : HLD((int)v.size()), seg((int)v.size()), v(v), n((int)v.size()) {} HLD_Lazy_Segment_Tree(int n, M x = Monoid::id) : HLD(n), seg(n), v(n, x), n(n) {} void set(int i, const M &x) { v[i] = x; } void build() { this->decompose(); if (use_edge) { for (int i = 0; i < n - 1; i++) seg.set(this->id_e[i], v[i]); } else { for (int i = 0; i < n; i++) seg.set(this->id_v[i], v[i]); } seg.build(); } void update(int u, int v, const O &x) { for (auto [l, r] : this->get_path(u, v, use_edge)) seg.update(l, r, x); } M query(int u, int v) { M ret = Monoid::id; for (auto [l, r] : this->get_path(u, v, use_edge)) ret = Monoid::merge(ret, seg.query(l, r)); return ret; } M operator[](int i) { return seg[(use_edge ? this->id_e : this->id_v)[i]]; } }; template <typename Acted_Monoid, bool use_edge, bool directed = false> struct HLD_Lazy_Segment_Tree_Noncommutative : Heavy_Light_Decomposition<directed> { using HLD = Heavy_Light_Decomposition<directed>; using Monoid = typename Acted_Monoid::Monoid; using Operator = typename Acted_Monoid::Operator; using M = typename Monoid::V; using O = typename Operator::V; Lazy_Segment_Tree<Acted_Monoid> seg1, seg2; vector<M> v; const int n; HLD_Lazy_Segment_Tree_Noncommutative(const vector<M> &v) : HLD((int)v.size()), seg1((int)v.size()), seg2((int)v.size()), v(v), n((int)v.size()) {} HLD_Lazy_Segment_Tree_Noncommutative(int n, M x = Monoid::id) : HLD(n), seg1(n), seg2(n), v(n, x), n(n) {} void set(int i, const M &x) { v[i] = x; } void build() { this->decompose(); if (use_edge) { for (int i = 0; i < n - 1; i++) { seg1.set(this->id_e[i], v[i]); seg2.set(n - 1 - this->id_e[i], v[i]); } } else { for (int i = 0; i < n; i++) { seg1.set(this->id_v[i], v[i]); seg2.set(n - 1 - this->id_v[i], v[i]); } } seg1.build(), seg2.build(); } void update(int u, int v, const O &x) { for (auto [l, r] : this->get_path(u, v, use_edge)) { seg1.update(l, r, x); seg2.update(n - r, n - l, x); } } M query(int u, int v) { M ret = Monoid::id; for (auto [l, r] : this->get_path_noncommutative(u, v, use_edge)) { if (l > r) { ret = Monoid::merge(ret, seg2.query(n - l, n - r)); } else { ret = Monoid::merge(ret, seg1.query(l, r)); } } return ret; } M operator[](int i) { return seg1[(use_edge ? this->id_e : this->id_v)[i]]; } }; void solve() { int N, Q; cin >> N >> Q; HLD_Lazy_Segment_Tree<Min_Plus_Acted_Monoid<ll>, false, false> seg(N); Euler_Tour_Subtree G(N); vector<int> u(N - 1), v(N - 1); vector<ll> c(N - 1); rep(i, N - 1) { cin >> u[i] >> v[i] >> c[i]; u[i]--, v[i]--; seg.add_edge(u[i], v[i]); G.add_edge(u[i], v[i]); } seg.build(); G.build(); vector<int> iv(N, -1); rep(i, N) iv[seg.id_v[i]] = i; vector<ll> d(N, INF); rep(i, N - 1) { if (seg.depth[u[i]] > seg.depth[v[i]]) swap(u[i], v[i]); seg.update(v[i], v[i], -(1LL << 62) + 1 + c[i]); d[v[i]] = c[i]; } // print(d); Lazy_Segment_Tree<Plus_Update_Acted_Monoid<int>> seg2(vector<pii>(N, pii(1, 1))); auto check = [&](ll x) { return x <= 0; }; while (Q--) { int t; cin >> t; if (t == 1) { int i; ll x; cin >> i >> x; i--; seg.update(0, i, -x); // cout << "! " << seg.query(0, i) << '\n'; for (auto [l, r] : seg.get_path(0, i)) { if (seg.seg.query(l, r) <= 0) { int j = seg.seg.find_last(r, check); int id = iv[j]; // assert(seg.id_v[j] == id); seg2.update(G.l[id], G.r[id], 0); ll w = d[id] - seg.seg[j]; // cout << "? " << j MM id + 1 MM w << '\n'; seg.update(0, id, w); } } } else { cout << seg2.query(0, N).first << '\n'; } } } int main() { int T = 1; // cin >> T; while (T--) solve(); }