結果

問題 No.2439 Fragile Apple Tree
ユーザー ecottea
提出日時 2023-08-21 00:51:21
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3,816 ms / 10,000 ms
コード長 18,576 bytes
コンパイル時間 6,046 ms
コンパイル使用メモリ 285,336 KB
最終ジャッジ日時 2025-02-16 11:58:23
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
inline int msb(__int128 n) { return (n >> 64) != 0 ? (127 - __builtin_clzll((ll)(n >> 64))) : n != 0 ? (63 - __builtin_clzll((ll)(n))) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
//
/*
* to :
* cost :
*/
struct WEdge {
// verify : https://judge.yosupo.jp/problem/shortest_path
int to; //
ll cost; //
WEdge() : to(-1), cost(-INFL) {}
WEdge(int to, ll cost) : to(to), cost(cost) {}
//
operator int() const { return to; }
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const WEdge& e) {
os << '(' << e.to << ',' << e.cost << ')';
return os;
}
#endif
};
//
/*
* WGraph g
* g[v] : v
*
* verify : https://judge.yosupo.jp/problem/shortest_path
*/
using WGraph = vector<vector<WEdge>>;
//O(n + m)
/*
* (, , ) n m
*
* n :
* m : n-1
* undirected : true
* one_indexed : 1-indexed true
*/
WGraph read_WGraph(int n, int m = -1, bool undirected = true, bool one_indexed = true) {
// verify : https://judge.yosupo.jp/problem/shortest_path
WGraph g(n);
if (m == -1) m = n - 1;
rep(i, m) {
int a, b; ll c;
cin >> a >> b >> c;
if (one_indexed) { --a; --b; }
g[a].push_back({ b, c });
if (undirected) g[b].push_back({ a, c });
}
return g;
}
//[,][,]M-
/*
* Edge_apply_sum_query<S, op, o, F, act, comp, id>(Graph g, int rt) : O(n)
* rt g v[0..n) = o()
* M- (S, op, o, F, act, comp, id)
*
* Edge_apply_sum_query<S, op, o, F, act, comp, id>(Graph g, int rt, vS a) : O(n)
* rt g v[0..n) = a[0..n)
* v[s] s v[rt]
*
* set(int s, S x) : O(log n)
* s x
*
* S get(int s) : O(log n)
* s
*
* S sum_subtree(int s) : O(log n)
* s
*
* S sum_path(int s, int t) : O((log n)^2)
* s→t
*
* apply(int s, F f) : O(log n)
* s f
*
* apply_subtree(int v, F f) : O(log n)
* s f
*
* apply_path(int s, int t, F f) : O((log n)^2)
* s→t f
*
* Z-
*/
template <class S, S(*op)(S, S), S(*o)(), class F, S(*act)(F, S), F(*comp)(F, F), F(*id)()>
class Edge_apply_sum_query {
// https://qiita.com/Pro_ktmr/items/4e1e051ea0561772afa3
int n;
// in[s] : DFS s
// out[s] : DFS s
// top[s] : s heavy path
// wgt[s] : s s
// p[s] : s
vi in, out, top, wgt, p;
// v[i] : t
using SEG = lazy_segtree<S, op, o, F, act, comp, id>;
SEG v;
// DFS
void dfs1(const Graph& g, int rt) {
function<void(int)> rf = [&](int s) {
repe(t, g[s]) {
if (t == p[s]) continue;
p[t] = s;
rf(t);
wgt[s] += wgt[t] + 1;
}
};
p[rt] = -1;
rf(rt);
};
// DFS
void dfs2(const Graph& g, int rt) {
int time = 0;
function<void(int, int)> rf = [&](int s, int tp) {
in[s] = time;
top[s] = tp;
time++;
//
int w_max = -INF, t_max = -1;
repe(t, g[s]) {
if (t == p[s]) continue;
if (chmax(w_max, wgt[t])) t_max = t;
}
//
if (t_max != -1) rf(t_max, tp);
//
repe(t, g[s]) {
if (t == p[s] || t == t_max) continue;
rf(t, t);
}
// s
out[s] = time;
};
rf(rt, rt);
}
public:
// rt g v[0..n) = o()
Edge_apply_sum_query(const Graph& g, int rt) : n(sz(g)), in(n), out(n), top(n), wgt(n), p(n), v(n) {
dfs1(g, rt);
dfs2(g, rt);
//
//vector<S> ini(n);
//rep(s, n) repe(t, g[s]) if (t != p[s]) ini[in[t.to]] = t.cost;
//v = SEG(ini);
}
// rt g v[0..n) = a[0..n)
Edge_apply_sum_query(const Graph& g, int rt, const vector<S>& a) : n(sz(g)), in(n), out(n), top(n), wgt(n), p(n) {
dfs1(g, rt);
dfs2(g, rt);
vector<S> ini(n);
rep(s, n) ini[in[s]] = a[s];
v = SEG(ini);
}
Edge_apply_sum_query() : n(0) {}
// s x
void set(int s, S x) {
v.set(in[s], x);
}
// s
S get(int s) {
return v.get(in[s]);
}
// s
S sum_subtree(int s) {
return v.prod(in[s] + 1, out[s]);
}
// s→t
S sum_path(int s, int t) {
// verify : https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/all/GRL_5_E
S res = o();
// s t
while (top[s] != top[t]) {
// s
if (in[top[s]] > in[top[t]]) swap(s, t);
// t v
// top[t] t
res = op(res, v.prod(in[top[t]], in[t] + 1));
//
t = p[top[t]];
}
// s t
// res
if (in[s] > in[t]) swap(s, t);
res = op(res, v.prod(in[s] + 1, in[t] + 1));
return res;
}
// s f
void apply(int s, F f) {
v.apply(in[s], f);
}
// s f
void apply_subtree(int s, F f) {
v.apply(in[s] + 1, out[s], f);
}
// s→t f
void apply_path(int s, int t, F f) {
// verify : https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/all/GRL_5_E
// s t
while (top[s] != top[t]) {
// s
if (in[top[s]] > in[top[t]]) swap(s, t);
// t v
v.apply(in[top[t]], in[t] + 1, f);
//
t = p[top[t]];
}
// s t
if (in[s] > in[t]) swap(s, t);
v.apply(in[s] + 1, in[t] + 1, f);
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, Edge_apply_sum_query& q) {
rep(s, q.n) os << q.get(s) << " ";
return os;
}
#endif
};
//[][]M-
/*
* Subtree_apply_sum_query<S, op, o, F, act, comp, id>(Graph g, int rt) : O(n)
* rt g o
* M- (S, op, o, F, act, comp, id)
*
* Subtree_apply_sum_query<S, op, o, F, act, comp, id>(Graph g, int rt, vS v) : O(n)
* rt g v[0..n)
*
* apply(int s, F f) : O(log n)
* s f
*
* apply_subtree(int s, F f) : O(log n)
* s f
*
* S get(int s) : O(log n)
* s
*
* S sum_subtree(int s) : O(log n)
* s
*/
template <class S, S(*op)(S, S), S(*o)(), class F, S(*act)(F, S), F(*comp)(F, F), F(*id)()>
class Subtree_apply_sum_query {
int n;
// in[s] : DFS s
// out[s] : DFS s
vi in, out;
// seg[t] : t
using SEG = lazy_segtree<S, op, o, F, act, comp, id>;
SEG seg;
//
void euler_tour(const Graph& g, int rt) {
int time = 0;
function<void(int, int)> rf = [&](int s, int p) {
// s
in[s] = time;
time++;
repe(t, g[s]) {
if (t == p) continue;
rf(t, s);
}
// s
out[s] = time;
};
//
rf(rt, -1);
}
public:
// rt g o
Subtree_apply_sum_query(const Graph& g, int rt) : n(sz(g)), in(n), out(n), seg(n) {
euler_tour(g, rt);
}
// rt g v[0..n)
Subtree_apply_sum_query(const Graph& g, int rt, const vector<S>& v) : n(sz(g)), in(n), out(n) {
// verify : https://www.codechef.com/problems/CHEFDIVISION
euler_tour(g, rt);
vector<S> ini(n);
rep(s, n) ini[in[s]] = v[s];
seg = SEG(ini);
}
Subtree_apply_sum_query() : n(0) {}
// s f
void apply(int s, F f) {
seg.apply(in[s], f);
}
// s f
void apply_subtree(int s, F f) {
// verify : https://www.codechef.com/problems/CHEFDIVISION
seg.apply(in[s], out[s], f);
}
// s
S get(int s) {
// verify : https://atcoder.jp/contests/abc138/tasks/abc138_d
return seg.get(in[s]);
}
// s
S sum_subtree(int s) {
// verify : https://www.codechef.com/problems/CHEFDIVISION
return seg.prod(in[s], out[s]);
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, Subtree_apply_sum_query Q) {
rep(i, Q.n) os << Q.get(i) << " ";
return os;
}
#endif
};
//max-plus min
/*
* S ∋ x
* F ∋ f = {a, b} : f(x) = max(a + x, b)
* x op y : min(x, y)
* f act x : f(x)
* f comp g : f o g
*/
using S125 = tuple<ll, int, int>; // (x, 0)
using F125 = pair<ll, ll>; // (a, b; -∞, 0)
S125 op125(S125 x, S125 y) { return min(x, y); }
S125 e125() { return { INFL, INF, -1 }; }
S125 act125(F125 f, S125 x) {
auto [val, ndep, id] = x;
auto [a, b] = f; // (a, b; -∞, 0)
// (a, b; -∞, 0).(x, 0) = (max(a + x, b), 0)
return { max(a + val, b), ndep, id };
}
F125 comp125(F125 f, F125 g) {
auto [a, b] = f; // (a, b; -∞, 0)
auto [c, d] = g; // (c, d; -∞, 0)
// (a, b; -∞, 0).(c, d; -∞, 0) = (a + c, max(a + d, b); -∞, 0)
return { a + c, max(a + d, b) };
}
F125 id125() { return { 0, -INFL }; }
#define MaxPlusAffine_Min_mmonoid S125, op125, e125, F125, act125, comp125, id125
//2×2 2
using T124 = ll;
using S124 = pair<T124, T124>; // (x; y)
using F124 = tuple<T124, T124, T124, T124>; // (a, b; c, d)
S124 op124(S124 p, S124 q) {
auto [px, py] = p; // (px; py)
auto [qx, qy] = q; // (qx; qy)
// [px] [qx] [px + qx]
// [py].[qy] = [py + qy]
return { px + qx, py + qy };
}
S124 e124() { return { 0, 0 }; }
S124 act124(F124 f, S124 p) {
auto [a, b, c, d] = f;
auto [x, y] = p;
// [a b] [x] [a x + b y]
// [c d].[y] = [c x + d y]
return { a * x + b * y, c * x + d * y };
}
F124 comp124(F124 f, F124 g) {
auto [fa, fb, fc, fd] = f;
auto [ga, gb, gc, gd] = g;
// [fa fb] [ga gb] [fa ga + fb gc fa gb + fb gd]
// [fc fd].[gc gd] = [fc ga + fd gc fc gb + fd gd]
T124 a = fa * ga + fb * gc, b = fa * gb + fb * gd;
T124 c = fc * ga + fd * gc, d = fc * gb + fd * gd;
return { a, b, c, d };
}
F124 id124() {
// [1 0]
// [0 1]
return { 1, 0, 0, 1 };
}
#define Matrix2LMul_Vector2_mset S124, op124, e124, F124, act124, comp124, id124
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n, q;
cin >> n >> q;
auto wg = read_WGraph(n);
Graph g(n); vi p(n); vi dep(n); vl c(n);
function<void(int)> rf = [&](int s) {
repe(t, wg[s]) {
if (t == p[s]) continue;
p[t] = s;
dep[t] = dep[s] + 1;
g[s].push_back(t);
c[t] = t.cost;
rf(t);
}
};
p[0] = -1;
rf(0);
vector<S125> ini_e(n);
rep(i, n) ini_e[i] = { c[i], -dep[i], i };
Edge_apply_sum_query<MaxPlusAffine_Min_mmonoid> Ge(g, 0, ini_e);
vector<S124> ini_v(n, { 0, 1 });
Subtree_apply_sum_query<Matrix2LMul_Vector2_mset> Gv(g, 0, ini_v);
dump(Ge); dump(Gv);
rep(hoge, q) {
int tp;
cin >> tp;
if (tp == 1) {
int v; ll x;
cin >> v >> x;
v--;
Ge.apply_path(0, v, { -x, 0 });
Gv.apply(v, { 1LL, x, 0LL, 1LL });
auto [val, ndep, id] = Ge.sum_path(0, v);
if (val == 0) {
auto [sum, cnt] = Gv.sum_subtree(id);
Ge.apply_path(0, p[id], { sum, 0 });
Gv.apply_subtree(id, { 0LL, 0LL, 0LL, 0LL });
}
}
else {
auto [val, cnt] = Gv.sum_subtree(0);
cout << cnt << "\n";
}
dump(Ge); dump(Gv);
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0