結果

問題 No.2439 Fragile Apple Tree
ユーザー ecotteaecottea
提出日時 2023-08-21 00:51:21
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3,485 ms / 10,000 ms
コード長 18,576 bytes
コンパイル時間 5,721 ms
コンパイル使用メモリ 301,600 KB
実行使用メモリ 153,188 KB
最終ジャッジ日時 2024-12-14 08:22:15
合計ジャッジ時間 46,497 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,261 ms
86,184 KB
testcase_01 AC 2,261 ms
121,932 KB
testcase_02 AC 2,114 ms
121,888 KB
testcase_03 AC 733 ms
153,120 KB
testcase_04 AC 1,316 ms
153,188 KB
testcase_05 AC 1,905 ms
121,988 KB
testcase_06 AC 2,190 ms
121,896 KB
testcase_07 AC 3,485 ms
122,888 KB
testcase_08 AC 3,371 ms
122,804 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 2 ms
6,820 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 2 ms
6,816 KB
testcase_13 AC 2 ms
6,820 KB
testcase_14 AC 3,256 ms
119,492 KB
testcase_15 AC 1,212 ms
122,012 KB
testcase_16 AC 2,006 ms
121,928 KB
testcase_17 AC 1,899 ms
122,032 KB
testcase_18 AC 568 ms
85,336 KB
testcase_19 AC 601 ms
44,292 KB
testcase_20 AC 211 ms
38,948 KB
testcase_21 AC 82 ms
6,820 KB
testcase_22 AC 1,058 ms
64,428 KB
testcase_23 AC 478 ms
32,964 KB
testcase_24 AC 508 ms
41,828 KB
testcase_25 AC 333 ms
74,296 KB
testcase_26 AC 442 ms
81,500 KB
testcase_27 AC 369 ms
61,708 KB
testcase_28 AC 2 ms
6,820 KB
testcase_29 AC 2 ms
6,816 KB
testcase_30 AC 2 ms
6,816 KB
testcase_31 AC 917 ms
118,424 KB
testcase_32 AC 933 ms
118,228 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
inline int msb(__int128 n) { return (n >> 64) != 0 ? (127 - __builtin_clzll((ll)(n >> 64))) : n != 0 ? (63 - __builtin_clzll((ll)(n))) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif


//【重み付きグラフの辺】
/*
* to : 行き先の頂点番号
* cost : 辺の重み
*/
struct WEdge {
	// verify : https://judge.yosupo.jp/problem/shortest_path

	int to; // 行き先の頂点番号
	ll cost; // 辺の重み

	WEdge() : to(-1), cost(-INFL) {}
	WEdge(int to, ll cost) : to(to), cost(cost) {}

	// プレーングラフで呼ばれたとき用
	operator int() const { return to; }

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const WEdge& e) {
		os << '(' << e.to << ',' << e.cost << ')';
		return os;
	}
#endif
};


//【重み付きグラフ】
/*
* WGraph g
* g[v] : 頂点 v から出る辺を並べたリスト
*
* verify : https://judge.yosupo.jp/problem/shortest_path
*/
using WGraph = vector<vector<WEdge>>;


//【重み付きグラフの入力】O(n + m)
/*
* (始点, 終点, 重み) の組からなる入力を受け取り,n 頂点 m 辺の重み付きグラフを構築して返す.
*
* n : グラフの頂点の数
* m : グラフの辺の数(省略すれば n-1)
* undirected : 無向グラフか(省略すれば true)
* one_indexed : 入力が 1-indexed か(省略すれば true)
*/
WGraph read_WGraph(int n, int m = -1, bool undirected = true, bool one_indexed = true) {
	// verify : https://judge.yosupo.jp/problem/shortest_path

	WGraph g(n);
	if (m == -1) m = n - 1;

	rep(i, m) {
		int a, b; ll c;
		cin >> a >> b >> c;

		if (one_indexed) { --a; --b; }

		g[a].push_back({ b, c });
		if (undirected) g[b].push_back({ a, c });
	}

	return g;
}


//【[部分木,パス]辺作用/[部分木,パス]辺総和(M-可換モノイド)】
/*
* Edge_apply_sum_query<S, op, o, F, act, comp, id>(Graph g, int rt) : O(n)
*	rt を根とする根付き木 g と辺値 v[0..n) = o() で初期化する.
*	要素は M-可換モノイド (S, op, o, F, act, comp, id) の元とする.
*
* Edge_apply_sum_query<S, op, o, F, act, comp, id>(Graph g, int rt, vS a) : O(n)
*	rt を根とする根付き木 g と辺値 v[0..n) = a[0..n) で初期化する.
*	辺値 v[s] は頂点 s に入る辺の値を表す(v[rt] は無視)
*
* set(int s, S x) : O(log n)
*	頂点 s に入る辺の値を x にする.
*
* S get(int s) : O(log n)
*	頂点 s に入る辺の値を返す.
*
* S sum_subtree(int s) : O(log n)
*	部分木 s の辺の値の総和を返す.
*
* S sum_path(int s, int t) : O((log n)^2)
*	パス s→t 上の辺の値の総和を返す.
*
* apply(int s, F f) : O(log n)
*	頂点 s に入る辺の値に f を作用させる.
*
* apply_subtree(int v, F f) : O(log n)
*	部分木 s の辺の値に f を作用させる.
*
* apply_path(int s, int t, F f) : O((log n)^2)
*	パス s→t 上の辺の値に f を作用させる.
*
* 利用:【区間加算フェニック木(Z-加群)】
*/
template <class S, S(*op)(S, S), S(*o)(), class F, S(*act)(F, S), F(*comp)(F, F), F(*id)()>
class Edge_apply_sum_query {
	// 参考:https://qiita.com/Pro_ktmr/items/4e1e051ea0561772afa3

	int n;

	// in[s]  : 根からの DFS で頂点 s に最初に入った時刻
	// out[s] : 根からの DFS で頂点 s から最後に出た時刻
	// top[s] : 頂点 s を含む heavy path の最も浅い頂点
	// wgt[s] : 頂点 s の重さ(部分木 s のもつ辺の数)
	// p[s] : 頂点 s の親
	vi in, out, top, wgt, p;

	// v[i] :  時刻 t に居た頂点に入る辺の値
	using SEG = lazy_segtree<S, op, o, F, act, comp, id>;
	SEG v;

	// 各頂点の重さと親を求めるための DFS を行う.
	void dfs1(const Graph& g, int rt) {
		function<void(int)> rf = [&](int s) {
			repe(t, g[s]) {
				if (t == p[s]) continue;
				p[t] = s;
				rf(t);
				wgt[s] += wgt[t] + 1;
			}
			};
		p[rt] = -1;
		rf(rt);
	};

	// 最も重い子を優先して DFS を行う.
	void dfs2(const Graph& g, int rt) {
		int time = 0;

		function<void(int, int)> rf = [&](int s, int tp) {
			in[s] = time;
			top[s] = tp;
			time++;

			// 重さ最大の頂点を得る.
			int w_max = -INF, t_max = -1;
			repe(t, g[s]) {
				if (t == p[s]) continue;
				if (chmax(w_max, wgt[t])) t_max = t;
			}

			// 重さ最大の頂点を優先的になぞる.
			if (t_max != -1) rf(t_max, tp);

			// 残りの頂点をなぞる.
			repe(t, g[s]) {
				if (t == p[s] || t == t_max) continue;
				rf(t, t);
			}

			// s から最後に離れる
			out[s] = time;
			};
		rf(rt, rt);
	}

public:
	// rt を根とする根付き木 g と辺値 v[0..n) = o() で初期化する.
	Edge_apply_sum_query(const Graph& g, int rt) : n(sz(g)), in(n), out(n), top(n), wgt(n), p(n), v(n) {
		dfs1(g, rt);
		dfs2(g, rt);

		// 重み付きグラフの場合
		//vector<S> ini(n);
		//rep(s, n) repe(t, g[s]) if (t != p[s]) ini[in[t.to]] = t.cost;
		//v = SEG(ini);
	}

	// rt を根とする根付き木 g と辺値 v[0..n) = a[0..n) で初期化する.
	Edge_apply_sum_query(const Graph& g, int rt, const vector<S>& a) : n(sz(g)), in(n), out(n), top(n), wgt(n), p(n) {
		dfs1(g, rt);
		dfs2(g, rt);

		vector<S> ini(n);
		rep(s, n) ini[in[s]] = a[s];
		v = SEG(ini);
	}
	Edge_apply_sum_query() : n(0) {}

	// 頂点 s に入る辺の値を x にする.
	void set(int s, S x) {
		v.set(in[s], x);
	}

	// 頂点 s に入る辺の値を返す.
	S get(int s) {
		return v.get(in[s]);
	}

	// 部分木 s の辺の値の総和を返す.
	S sum_subtree(int s) {
		return v.prod(in[s] + 1, out[s]);
	}

	// パス s→t 上の辺の値の総和を返す.
	S sum_path(int s, int t) {
		// verify : https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/all/GRL_5_E

		S res = o();

		// s と t が異なる連結成分に属している限りループを回す.
		while (top[s] != top[t]) {
			// s の方が浅い連結成分に属しているとする.
			if (in[top[s]] > in[top[t]]) swap(s, t);

			// t を含む連結成分は v で並んで配置されているので,
			// 最も浅い頂点 top[t] から t までの範囲の和を求める.
			res = op(res, v.prod(in[top[t]], in[t] + 1));

			// 一つ浅い連結成分に移動する.
			t = p[top[t]];
		}

		// ここまできたら s と t は同じ連結成分に属するので,
		// その間の辺のみの和を res に加算する.
		if (in[s] > in[t]) swap(s, t);
		res = op(res, v.prod(in[s] + 1, in[t] + 1));

		return res;
	}

	// 頂点 s に入る辺に f を作用させる.
	void apply(int s, F f) {
		v.apply(in[s], f);
	}

	// 部分木 s の辺の値に f を作用させる.
	void apply_subtree(int s, F f) {
		v.apply(in[s] + 1, out[s], f);
	}

	// パス s→t 上の辺の値に f を作用させる.
	void apply_path(int s, int t, F f) {
		// verify : https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/all/GRL_5_E

		// s と t が異なる連結成分に属している限りループを回す.
		while (top[s] != top[t]) {
			// s の方が浅い連結成分に属しているとする.
			if (in[top[s]] > in[top[t]]) swap(s, t);

			// t を含む連結成分は v で並んで配置されている.
			v.apply(in[top[t]], in[t] + 1, f);

			// 一つ浅い連結成分に移動する.
			t = p[top[t]];
		}

		// ここまできたら s と t は同じ連結成分に属する.
		if (in[s] > in[t]) swap(s, t);
		v.apply(in[s] + 1, in[t] + 1, f);
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, Edge_apply_sum_query& q) {
		rep(s, q.n) os << q.get(s) << " ";
		return os;
	}
#endif
};


//【[部分木]頂点作用/[部分木]頂点総和クエリ(M-可換モノイド)】
/*
* Subtree_apply_sum_query<S, op, o, F, act, comp, id>(Graph g, int rt) : O(n)
*	rt を根とする根付き木 g と値 o で初期化する.
*	要素は M-可換モノイド (S, op, o, F, act, comp, id) の元とする.
*
* Subtree_apply_sum_query<S, op, o, F, act, comp, id>(Graph g, int rt, vS v) : O(n)
*	rt を根とする根付き木 g と値 v[0..n) で初期化する.
*
* apply(int s, F f) : O(log n)
*	頂点 s の値に f を作用させる.
*
* apply_subtree(int s, F f) : O(log n)
*	部分木 s の全ての頂点の値に f を作用させる.
*
* S get(int s) : O(log n)
*	頂点 s の値を返す.
*
* S sum_subtree(int s) : O(log n)
*	部分木 s の全ての頂点の値の総和を返す.
*/
template <class S, S(*op)(S, S), S(*o)(), class F, S(*act)(F, S), F(*comp)(F, F), F(*id)()>
class Subtree_apply_sum_query {
	int n;

	// in[s]  : 根からの DFS で s に最初に入った時刻
	// out[s] : 根からの DFS で s から最後に出た時刻
	vi in, out;

	// seg[t] : 時刻 t に居た頂点の値
	using SEG = lazy_segtree<S, op, o, F, act, comp, id>;
	SEG seg;

	// ユニークオイラーツアー
	void euler_tour(const Graph& g, int rt) {
		int time = 0;

		function<void(int, int)> rf = [&](int s, int p) {
			// s を最初に訪れた
			in[s] = time;
			time++;

			repe(t, g[s]) {
				if (t == p) continue;

				rf(t, s);
			}

			// s から最後に離れる
			out[s] = time;
			};

		// 根から順に探索する.
		rf(rt, -1);
	}

public:
	// rt を根とする根付き木 g と値 o で初期化する.
	Subtree_apply_sum_query(const Graph& g, int rt) : n(sz(g)), in(n), out(n), seg(n) {
		euler_tour(g, rt);
	}

	// rt を根とする根付き木 g と値 v[0..n) で初期化する.
	Subtree_apply_sum_query(const Graph& g, int rt, const vector<S>& v) : n(sz(g)), in(n), out(n) {
		// verify : https://www.codechef.com/problems/CHEFDIVISION

		euler_tour(g, rt);
		vector<S> ini(n);
		rep(s, n) ini[in[s]] = v[s];
		seg = SEG(ini);
	}
	Subtree_apply_sum_query() : n(0) {}

	// 頂点 s の値に f を作用させる.
	void apply(int s, F f) {
		seg.apply(in[s], f);
	}

	// 部分木 s の全ての頂点の値に f を作用させる.
	void apply_subtree(int s, F f) {
		// verify : https://www.codechef.com/problems/CHEFDIVISION

		seg.apply(in[s], out[s], f);
	}

	// 頂点 s の値を返す.
	S get(int s) {
		// verify : https://atcoder.jp/contests/abc138/tasks/abc138_d

		return seg.get(in[s]);
	}

	// 部分木 s の全ての頂点の値の総和を返す.
	S sum_subtree(int s) {
		// verify : https://www.codechef.com/problems/CHEFDIVISION

		return seg.prod(in[s], out[s]);
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, Subtree_apply_sum_query Q) {
		rep(i, Q.n) os << Q.get(i) << " ";
		return os;
	}
#endif
};


//【max-plusアフィン 作用付き min モノイド】(の改変)
/*
* S ∋ x
* F ∋ f = {a, b} : f(x) = max(a + x, b)
* x op y : min(x, y)
* f act x : 代入 f(x)
* f comp g : 合成関数 f o g
*/
using S125 = tuple<ll, int, int>; // ベクトル (x, 0)
using F125 = pair<ll, ll>; // 行列 (a, b; -∞, 0)
S125 op125(S125 x, S125 y) { return min(x, y); }
S125 e125() { return { INFL, INF, -1 }; }
S125 act125(F125 f, S125 x) {
	auto [val, ndep, id] = x;
	auto [a, b] = f; // 行列 (a, b; -∞, 0)

	// (a, b; -∞, 0).(x, 0) = (max(a + x, b), 0)
	return { max(a + val, b), ndep, id };
}
F125 comp125(F125 f, F125 g) {
	auto [a, b] = f; // 行列 (a, b; -∞, 0)
	auto [c, d] = g; // 行列 (c, d; -∞, 0)

	// (a, b; -∞, 0).(c, d; -∞, 0) = (a + c, max(a + d, b); -∞, 0)
	return { a + c, max(a + d, b) };
}
F125 id125() { return { 0, -INFL }; }
#define MaxPlusAffine_Min_mmonoid S125, op125, e125, F125, act125, comp125, id125


//【2×2行列乗算 左作用付き 2次元ベクトル モノイド】
using T124 = ll;
using S124 = pair<T124, T124>; // ベクトル (x; y)
using F124 = tuple<T124, T124, T124, T124>; // 行列 (a, b; c, d)
S124 op124(S124 p, S124 q) {
	auto [px, py] = p; // ベクトル (px; py)
	auto [qx, qy] = q; // ベクトル (qx; qy)

	// [px] [qx]   [px + qx]
	// [py].[qy] = [py + qy]
	return { px + qx, py + qy };
}
S124 e124() { return { 0, 0 }; }
S124 act124(F124 f, S124 p) {
	auto [a, b, c, d] = f;
	auto [x, y] = p;

	// [a b] [x]   [a x + b y]
	// [c d].[y] = [c x + d y]
	return { a * x + b * y, c * x + d * y };
}
F124 comp124(F124 f, F124 g) {
	auto [fa, fb, fc, fd] = f;
	auto [ga, gb, gc, gd] = g;

	// [fa fb] [ga gb]   [fa ga + fb gc  fa gb + fb gd]
	// [fc fd].[gc gd] = [fc ga + fd gc  fc gb + fd gd]
	T124 a = fa * ga + fb * gc, b = fa * gb + fb * gd;
	T124 c = fc * ga + fd * gc, d = fc * gb + fd * gd;
	return { a, b, c, d };
}
F124 id124() {
	// [1 0]
	// [0 1]
	return { 1, 0, 0, 1 };
}
#define Matrix2LMul_Vector2_mset S124, op124, e124, F124, act124, comp124, id124


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n, q;
	cin >> n >> q;
	
	auto wg = read_WGraph(n);

	Graph g(n); vi p(n); vi dep(n); vl c(n);

	function<void(int)> rf = [&](int s) {
		repe(t, wg[s]) {
			if (t == p[s]) continue;
			p[t] = s;
			dep[t] = dep[s] + 1;
			g[s].push_back(t);
			c[t] = t.cost;
			rf(t);
		}
	};
	p[0] = -1;
	rf(0);

	vector<S125> ini_e(n);
	rep(i, n) ini_e[i] = { c[i], -dep[i], i };
	Edge_apply_sum_query<MaxPlusAffine_Min_mmonoid> Ge(g, 0, ini_e);
	
	vector<S124> ini_v(n, { 0, 1 });
	Subtree_apply_sum_query<Matrix2LMul_Vector2_mset> Gv(g, 0, ini_v);

	dump(Ge); dump(Gv);

	rep(hoge, q) {
		int tp;
		cin >> tp;

		if (tp == 1) {
			int v; ll x;
			cin >> v >> x;
			v--;

			Ge.apply_path(0, v, { -x, 0 });
			Gv.apply(v, { 1LL, x, 0LL, 1LL });

			auto [val, ndep, id] = Ge.sum_path(0, v);
			if (val == 0) {
				auto [sum, cnt] = Gv.sum_subtree(id);
				Ge.apply_path(0, p[id], { sum, 0 });
				Gv.apply_subtree(id, { 0LL, 0LL, 0LL, 0LL });
			}
		}
		else {
			auto [val, cnt] = Gv.sum_subtree(0);

			cout << cnt << "\n";
		}

		dump(Ge); dump(Gv);
	}
}
0