結果

問題 No.2404 Vertical Throw Up
ユーザー 👑 p-adic
提出日時 2023-08-29 17:39:18
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 119 ms / 2,000 ms
コード長 62,214 bytes
コンパイル時間 24,521 ms
コンパイル使用メモリ 340,492 KB
最終ジャッジ日時 2025-02-16 15:33:57
ジャッジサーバーID
(参考情報)
judge1 / judge6
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define CERR( MESSAGE ) cerr << MESSAGE << endl;
#define COUT( ANSWER ) cout << " " << ANSWER << endl
#define ASSERT( A , MIN , MAX ) CERR( "ASSERT " << ( MIN ) << ( ( MIN ) <= A ? "<=" : ">" ) << A << ( A <= ( MAX ) ? "<=" : ">" ) << (
      MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
#define LIBRARY_SEARCH bool searched_library = false; LibrarySearch( searched_library ); if( searched_library ){ QUIT; };
#define START_WATCH( PROCESS_NAME ) StartWatch( PROCESS_NAME )
#define STOP_WATCH( HOW_MANY_TIMES ) StopWatch( HOW_MANY_TIMES )
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define CERR( MESSAGE )
#define COUT( ANSWER ) cout << ANSWER << "\n"
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define LIBRARY_SEARCH
#define START_WATCH( PROCESS_NAME )
#define STOP_WATCH( HOW_MANY_TIMES )
#endif
// #define RANDOM_TEST
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define TEST_CASE_NUM( BOUND ) DEXPR( int , bound_T , BOUND , min( BOUND , 100 ) ); int T = 1; if constexpr( bound_T > 1 ){ SET_ASSERT( T , 1 ,
    bound_T ); }
#define START_MAIN REPEAT( T ){ if constexpr( bound_T > 1 ){ CERR( "testcase " << VARIABLE_FOR_REPEAT_T << ":" ); }
#define FINISH_MAIN goto END_MAIN; END_MAIN: CERR( "" ); }
#define QUIT return 0
#ifdef DEBUG
inline void AlertAbort( int n ) { CERR(
      "abortassert" ); }
void StartWatch( const string& process_name = "nothing" );
void StopWatch( const int& how_many_times = 1 );
#endif
#if defined( DEBUG ) && defined( RANDOM_TEST )
ll GetRand( const ll& Rand_min , const ll& Rand_max );
#define SET_ASSERT( A , MIN , MAX ) CERR( #A << " = " << ( A = GetRand( MIN , MAX ) ) )
#define RETURN( ANSWER ) if( ( ANSWER ) == guchoku ){ CERR( ( ANSWER ) << " == " << guchoku ); goto END_MAIN; } else { CERR( ( ANSWER ) << " != "
      << guchoku ); QUIT; }
#else
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#define RETURN( ANSWER ) COUT( ( ANSWER ) ); goto END_MAIN
#endif
template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
ll ANSWER{ 1 }; \
{ \
ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \
static ll ANSWER[CONSTEXPR_LENGTH]; \
static ll ANSWER_INV[CONSTEXPR_LENGTH]; \
static ll INVERSE[CONSTEXPR_LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_INDEX ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
} \
ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
FOREQ( i , 2 , MAX_INDEX ){ \
ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (
          MODULO ) ) ) %= ( MODULO ); \
} \
} \
//
// EXPRESSIONANSWER調EXPRESSION >= TARGET
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
if( MINIMUM <= MAXIMUM ){ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
CERR( " " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" <<
          TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \
} \
ANSWER = UPDATE_ANSWER; \
} \
CERR( " " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << (
        EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) << TARGET ); \
CERR( ( EXPRESSION DESIRED_INEQUALITY TARGET ? "" : "" ) ); \
assert( EXPRESSION DESIRED_INEQUALITY TARGET ); \
} else { \
CERR( " " << MINIMUM << ">" << MAXIMUM ); \
assert( MINIMUM <= MAXIMUM ); \
} \
// 調EXPRESSION >= TARGET
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION >= TARGET
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// titeratorend()
template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end;
    } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// titeratorend()
template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end;
    } auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// titeratorend()
template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); }
// titeratorend()
template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); }
//
#define TE template
#define TY typename
#define US using
#define ST static
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
#define ASK_NUMBER( ... ) \
CERR( "" ); \
CERR( "" ); \
problems = { __VA_ARGS__ }; \
problems_size = problems.size(); \
FOR( i , 0 , problems_size ){ \
CERR( i << ": " << problems[i] ); \
} \
cin >> num; \
CERR( "" ); \
if( num < 0 || num >= problems_size ){ \
CERR( "" << problems_size - 1 << "" ); \
CERR( "" ); \
CERR( "" ); \
return; \
} \
num_temp = 0; \
#define ASK_YES_NO( QUESTION ) \
CERR( "" ); \
CERR( QUESTION << "[y/n]" ); \
cin >> reply; \
if( reply != "y" && reply != "n" ){ \
CERR( "y/n" ); \
CERR( "" ); \
CERR( "" ); \
return; \
} \
CERR( "" ); \
#define SLS( CLASS ) void CLASS ## LibrarySearch( int& num , int& num_temp , string& reply , vector<string>& problems , int& problems_size )
#define CALL_SLS( CLASS ) CLASS ## LibrarySearch( num , num_temp , reply , problems , problems_size )
SLS( ExplicitExpression );
SLS( ExplicitExpressionUnary );
SLS( ExplicitExpressionMultiary );
SLS( ExplicitExpressionIteration );
SLS( ExplicitExpressionArraySum );
SLS( ExplicitExpressionFunctionOnPermutation );
SLS( ExplicitExpressionFunctionOnTree );
SLS( FunctionOnTree );
SLS( ExplicitExpressionFunctionOnNonTreeGraph );
SLS( ExplicitExpressionOrder );
SLS( ExplicitExpressionProbability );
SLS( ExplicitExpressionOther );
SLS( Maximisation );
SLS( MaximisationFunctionOnAffineSpace );
SLS( MaximisationFunctionOnArray );
SLS( MaximisationSubArraySum );
SLS( MaximisationArrayFunction );
SLS( MaximisationArrayLength );
SLS( MaximisationFunctionOnTree );
SLS( MinimisationMovingCost );
SLS( MaximisationStringMatching );
SLS( MaximisationBipartiteMatching );
SLS( MaximisationProbability );
SLS( Counting );
SLS( CountingExplicitExpression );
SLS( CountingArray );
SLS( CountingSubArray );
SLS( CountingSumFixedSubArray );
SLS( CountingRestrctedSubArray );
SLS( CountingRestrctedContinuousSubArray );
SLS( CountingRestrctedDiscontinuousSubArray );
SLS( CountingRestrctedSubPermutation );
SLS( CountingArbitraryArray );
SLS( CountingSubArrayImage );
SLS( CountingPartitionOfTree );
SLS( CountingString );
SLS( CountingMatchingSubString );
SLS( Solving );
SLS( Query );
SLS( QueryArray );
SLS( QueryGraph );
SLS( Decision );
SLS( DecisionConnectedness );
SLS( DecisionHigherConnectedness );
SLS( DecisionGame );
SLS( DecisionAccessibility );
SLS( DecisionSatisfiability );
SLS( Construction );
void LibrarySearch( bool& searched_library )
{
int num = 0;
vector<string> problems{};
int problems_size = 13;
int num_temp = 0;
string reply{};
ASK_YES_NO( "" );
if( reply != "y" ){
CERR( "" );
CERR( "" );
return;
}
searched_library = true;
ASK_NUMBER(
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( ExplicitExpression );
} else if( num == num_temp++ ){
CALL_SLS( Maximisation );
} else if( num == num_temp++ ){
CALL_SLS( Counting );
} else if( num == num_temp++ ){
CALL_SLS( Solving );
} else if( num == num_temp++ ){
CALL_SLS( Query );
} else if( num == num_temp++ ){
CALL_SLS( Decision );
} else if( num == num_temp++ ){
CALL_SLS( Construction );
}
ASK_YES_NO( "" );
if( reply == "y" ){
CERR( "" );
CERR( "" );
CERR( "N" );
CERR( "使" );
CERR( "TLE" );
CERR( "- " );
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\CoordinateCompress" );
CERR( "" );
CERR( "" );
CERR( "static" );
CERR( "" );
CERR( "" );
}
CERR( "" );
CERR( "" );
}
SLS( ExplicitExpression )
{
ASK_YES_NO( "" );
if( reply == "y" ){
CALL_SLS( ExplicitExpressionUnary );
} else {
CALL_SLS( ExplicitExpressionMultiary );
}
}
SLS( ExplicitExpressionUnary )
{
CERR( "OEIS" );
CERR( "https://oeis.org/?language=japanese" );
CERR( "" );
CERR( "" );
CERR( "- 調" );
CERR( "- p使" );
CERR( "- pp" );
CERR( " " );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "- " );
CERR( "- " );
CERR( "- " );
CERR( "- " );
CERR( "" );
}
SLS( ExplicitExpressionMultiary )
{
ASK_YES_NO( "" );
if( reply == "y" ){
CALL_SLS( ExplicitExpressionIteration );
} else {
ASK_NUMBER(
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionArraySum );
} else if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionFunctionOnPermutation );
} else if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionFunctionOnTree );
} else if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionFunctionOnNonTreeGraph );
} else if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionOrder );
} else if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionProbability );
} else if( num == num_temp++ ){
CALL_SLS( ExplicitExpressionOther );
}
}
}
SLS( ExplicitExpressionIteration )
{
CERR( "NTK" );
CERR( "- O((N + T)log_2 K)" );
CERR( " \\Mathematics\\Function\\Iteration\\Doubling" );
CERR( "- O(TN)" );
CERR( " \\Mathematics\\Function\\Iteration\\LoopDetection" );
CERR( "- O(N)" );
CERR( "" );
}
SLS( ExplicitExpressionArraySum )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CERR( "f" );
CERR( "f" );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "\\Mathematics\\Arithmetic\\Mod" );
CERR( "\\Mathematics\\Polynoial" );
CERR( "" );
} else if( num == num_temp++ ){
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CERR( "" );
CALL_SLS( ExplicitExpressionFunctionOnTree );
CERR( "" );
CERR( "f" );
CERR( "f" );
} else if( num == num_temp++ ){
CERR( "" );
CERR( "" );
}
}
CERR( "" );
CERR( "" );
}
SLS( ExplicitExpressionFunctionOnPermutation )
{
CERR( "- " );
CERR( " - O(N log_2 N)O(N^2)" );
CERR( " - O(N log_2 N)O(N)" );
CERR( "- " );
CERR( " - O(N^3)" );
CERR( " - O(N 2^N)" );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "- O(N^2)" );
CERR( "- O(N log_2 N)BIT" );
CERR( " \\Mathematics\\Combinatorial\\Permutation" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT" );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "i<j" );
CERR( "" );
CERR( "" );
}
SLS( ExplicitExpressionFunctionOnTree )
{
CALL_SLS( FunctionOnTree );
CERR( "" );
CERR( "DP" );
CERR( "\\Mathematics\\Geometry\\Graph\\DepthFirstSearch\\Tree" );
CERR( "" );
ASK_YES_NO( "fbit" );
if( reply == "y" ){
CERR( "Tvjbitsdp[v][s][j]" );
CERR( "v,s,j" );
CERR( "Tbit1" );
CERR( "ijbits=0,1dp[i][s][j]" );
CERR( "" );
CERR( "" );
CERR( "bitset" );
}
}
SLS( FunctionOnTree )
{
CERR( "f" );
CERR( "" );
CERR( "TPPpf(p)F(P)" );
CERR( "TT" );
CERR( "" );
CERR( "PppD(p)" );
CERR( "DP" );
CERR( "" );
CERR( "PpP'p" );
CERR( "F(P)=F(P')+f(p)" );
}
SLS( ExplicitExpressionFunctionOnNonTreeGraph )
{
CERR( "- " );
CERR( " - O(N 2^N)" );
CERR( " \\Mathematics\\Combinatorial\\ZetaTransform" );
CERR( " - O(N^2)" );
CERR( " \\Mathematics\\Combinatorial\\ZetaTransform\\MahlerTransform" );
CERR( "- " );
CERR( " \\Mathematics\\Combinatorial\\ZetaTransform" );
CERR( "" );
}
SLS( ExplicitExpressionOrder )
{
CERR( "Sa" );
CERR( "- si" );
CERR( " a[i]<=si" );
CERR( "- ia[i]Ss" );
CERR( " a[i]<=ss" );
CERR( "" );
}
SLS( ExplicitExpressionProbability )
{
CERR( "- " );
CERR( " - " );;
CERR( " \\Mathematics\\Combinatorial\\ZetaTransform" );
CERR( " - " );
CERR( " - " );
CERR( "- " );
CERR( " - " );
CERR( " - " );
CERR( "" );
}
SLS( ExplicitExpressionOther )
{
CERR( "- " );
CERR( " - " );
CERR( " - " );
CERR( " - " );
CERR( " https://ei1333.hateblo.jp/entry/2021/07/30/144201" );
CERR( "- " );
CERR( "" );
}
SLS( Maximisation )
{
ASK_NUMBER(
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( MaximisationFunctionOnAffineSpace );
} else if( num == num_temp++ ){
CALL_SLS( MaximisationFunctionOnArray );
} else if( num == num_temp++ ){
CALL_SLS( MaximisationArrayLength );
} else if( num == num_temp++ ){
CALL_SLS( MaximisationFunctionOnTree );
} else if( num == num_temp++ ){
CALL_SLS( MinimisationMovingCost );
} else if( num == num_temp++ ){
CALL_SLS( MaximisationStringMatching );
} else if( num == num_temp++ ){
CALL_SLS( MaximisationBipartiteMatching );
} else if( num == num_temp++ ){
CALL_SLS( MaximisationProbability );
}
}
SLS( MaximisationFunctionOnAffineSpace )
{
ASK_NUMBER(
"" ,
"" ,
""
);
if( num == num_temp++ ){
CERR( "" );
} else if( num == num_temp++ ){
CERR( "" );
} else if( num == num_temp++ ){
CERR( "" );
CERR( "- 調" );
CERR( "- " );
CERR( "- " );
CERR( "" );
}
CERR( "" );
CERR( "" );
}
SLS( MaximisationFunctionOnArray )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( MaximisationSubArraySum );
} else if( num == num_temp++ ){
CALL_SLS( MaximisationArrayFunction );
}
} else if( num == num_temp++ ){
CERR( "- " );
CERR( " idp[i]" );
CERR( " i" );
CERR( "- v" );
CERR( " v" );
CERR( "" );
}
}
SLS( MaximisationSubArraySum )
{
CERR( "NMV" );
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CERR( "" );
CERR( "CC=∞" );
CERR( "C<∞" );
CERR( "- O(2^N)" );
CERR( "- O(N 2^{N/2})" );
CERR( "- O(NV)[C-V,C+V]" );
CERR( " " );
CERR( " https://stackoverflow.com/a/18949218" );
CERR( "- O((N+C)log_2 C)" );
CERR( " " );
CERR( " \\Mathematics\\Polynomial" );
CERR( "- O(C^2)" );
CERR( " cv[c]" );
CERR( " " );
CERR( " cdp[c]" );
CERR( " c" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "K<=2nC_n" );
CERR( "mC_n[k_m]<=D_mn" );
CERR( "" );
CERR( "{C_n,n}{k_m,D_m}" );
CERR( "" );
CERR( "- K=1" );
CERR( "- K=2{2,}set" );
CERR( " " );
}
}
SLS( MaximisationArrayFunction )
{
CERR( "FA" );
CERR( "BF(B)" );
CERR( "fx" );
CERR( "- ixX(i)" );
CERR( "- ixi+1xdX(i)" );
CERR( "" );
CERR( "- O(sum_i X(i) dX(i))fxO(1)" );
CERR( " ix" );
CERR( "- O(N log_2 X(N))" );
CERR( " - fxO(N)x調x" );
CERR( " - fxO(N/x)x" );
CERR( "- O(N log_2 N)xfxO(log_2 N)" );
CERR( " x" );
CERR( "" );
}
SLS( MaximisationArrayLength )
{
CERR( "" );
CERR( "- " );
CERR( " " );
CERR( " \\Mathematics\\Combinatorial\\Counting\\IncreasingSubsequence" );
CERR( "- " );
CERR( " " );
CERR( " \\Mathematics\\Combinatorial\\Counting\\IncreasingSubsequence\\Subwalk" );
CERR( "" );
}
SLS( MaximisationFunctionOnTree )
{
CALL_SLS( FunctionOnTree );
CERR( "iF(P)dp[i]" );
CERR( "iO(N^2×f)" );
CERR( "" );
}
SLS( MinimisationMovingCost )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CERR( "" );
CERR( "" );
CERR( "- BFSDijkstra" );
CERR( " \\Mathematics\\Geometry\\Graph\\BreadthFirst" );
CERR( " \\Mathematics\\Geometry\\Graph\\Dijkstra" );
CERR( "- " );
CERR( " - O(V^3)FloydWarshall" );
CERR( " \\Mathematics\\Geometry\\Graph\\FloydWarshall" );
CERR( " - maxO(E(log_2 E + α(V)))UnionFind" );
CERR( " \\Utility\\VLTree\\UnionFindForest" );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "HeldKarp" );
}
}
SLS( MaximisationStringMatching )
{
CERR( "" );
CERR( "- " );
CERR( "- " );
CERR( " - O(N)" );
CERR( " - O(N)" );
CERR( "- " );
CERR( " \\Utility\\String\\RollingHash" );
CERR( "- " );
CERR( " \\Utility\\String\\Palindrome" );
CERR( "- Z" );
CERR( " \\Utility\\String\\Z-Algorithm" );
CERR( "- {0,1}" );
CERR( " " );
CERR( " \\Mathematics\\Arithmetic\\Mod" );
CERR( " \\Mathematics\\Polynomial" );
CERR( "" );
}
SLS( MaximisationBipartiteMatching )
{
CERR( "HopcroftKarp" );
CERR( "\\Mathematics\\Geometry\\Graph\\HopcroftKarp" );
CERR( "" );
}
SLS( MaximisationProbability )
{
CERR( "" );
CERR( "" );
CERR( "sdp[s]" );
CERR( "s" );
}
SLS( Counting )
{
ASK_NUMBER(
"" ,
"" ,
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( CountingExplicitExpression );
} else if( num == num_temp++ ){
CALL_SLS( CountingArray );
} else if( num == num_temp++ ){
CALL_SLS( CountingPartitionOfTree );
} else if( num == num_temp++ ){
CALL_SLS( CountingString );
}
}
SLS( CountingExplicitExpression )
{
CERR( "- " );
CERR( "- " );
CERR( "- " );
CERR( "" );
}
SLS( CountingArray )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( CountingSubArray );
} else if( num == num_temp++ ){
CALL_SLS( CountingArbitraryArray );
}
}
SLS( CountingSubArray )
{
ASK_NUMBER(
"" ,
""
""
);
if( num == num_temp++ ){
CALL_SLS( CountingSumFixedSubArray );
} else if( num == num_temp++ ){
CALL_SLS( CountingRestrctedSubArray );
} else if( num == num_temp++ ){
CALL_SLS( CountingSubArrayImage );
}
}
SLS( CountingSumFixedSubArray )
{
CERR( "NC" );
CERR( "- O(2^N)" );
CERR( "- O(2^N)" );
CERR( "- O(2^{N/2}N)" );
CERR( " " );
CERR( "- C10^5O((N+C)log_2 C)" );
CERR( " " );
CERR( " \\Mathematics\\Arithmetic\\Mod" );
CERR( " \\Mathematics\\Polynomial" );
CERR( "" );
}
SLS( CountingRestrctedSubArray )
{
ASK_NUMBER(
"" ,
"" ,
""
);
CERR( "NAL+n<=N+1n,L" );
CERR( "- iQ(i)" );
CERR( "- 0<=l<Ln-tuple(b_0,...,b_{n-1})R_l(b_0,...,b_{n-1})" );
CERR( "BP(B)" );
CERR( "B|B|Q(|B|)|B|<L+n0<=l<=|B|-n" );
CERR( " R_l(B_l,...,B_{l+n-1})" );
CERR( "" );
CERR( "" );
CERR( "N>=3(n,L)=(2,2)" );
CERR( "- Q(i)=i=3" );
CERR( "- R_0(b_0,b_1)=b_0<b_1" );
CERR( "- R_1(b_0,b_1)=b_0>b_1" );
CERR( "" );
CERR( "" );
if( num == num_temp++ ){
CALL_SLS( CountingRestrctedContinuousSubArray );
} else if( num == num_temp++ ){
CALL_SLS( CountingRestrctedDiscontinuousSubArray );
} else if( num == num_temp++ ){
CALL_SLS( CountingRestrctedSubPermutation );
}
CERR( "" );
CERR( "" );
CERR( "R_l(B)gcdmax" );
CERR( "" );
CERR( "\\Mathematics\\Combinatorial\\ZetaTransform" );
CERR( "" );
}
SLS( CountingRestrctedContinuousSubArray )
{
CERR( "P(B)AB" );
CERR( "- R_llO(N)" );
CERR( "- R_ll" );
CERR( " - O(N^2)" );
CERR( " - O(N^2)R_l" );
CERR( "" );
}
SLS( CountingRestrctedDiscontinuousSubArray )
{
CERR( "P(B)AB" );
CERR( "- n-1<=i<=max{j<=N|Q(j)}i" );
CERR( "- (0,1,...,N-1)n-1s" );
CERR( "" );
CERR( "i0<=l<=i-nR_l(B)" );
CERR( " n-1sABdp[i][s]" );
CERR( "i,s" );
CERR( "\\Mathematics\\Combinatorial\\Counting\\IncreasingSubsequence" );
CERR( "\\Mathematics\\Combinatorial\\Counting\\IncreasingSubsequence\\Subwalk" );
CERR( "" );
}
SLS( CountingRestrctedSubPermutation )
{
CERR( "P(B)AB" );
CERR( "- n-1<=|S|<=max{j<=N|Q(j)}(0,1,...,N-1)S" );
CERR( "- Sn-1s" );
CERR( "" );
CERR( "0<=l<=|S|-nR_l(B)n-1s" );
CERR( " SABdp[S][s]" );
CERR( "S,s" );
CERR( "" );
CERR( "s[0,N)^{n-1}S" );
CERR( "" );
CERR( "" );
CERR( "N" );
CERR( "7! ≒ 5×10^3" );
CERR( "8! ≒ 4×10^4" );
CERR( "9! ≒ 4×10^5" );
CERR( "10! ≒ 4×10^6" );
CERR( "11! ≒ 4×10^7" );
CERR( "12! ≒ 5×10^8" );
CERR( "" );
CERR( "\\Mathematics\\Combinatorial\\Permutation" );
CERR( "" );
}
SLS( CountingArbitraryArray )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CERR( "- " );
CERR( "- " );
CERR( " ivdp[i][v]" );
CERR( " i,v" );
} else if( num == num_temp++ ){
CERR( "- " );
CERR( "- " );
CERR( "- " );
}
CERR( "" );
}
SLS( CountingSubArrayImage )
{
CERR( "A" );
CERR( "A" );
CERR( "DP" );
CERR( "iAdp[i]" );
CERR( "s=A[j]j<ilast[i][s]" );
CERR( "i" );
CERR( "" );
CERR( "" );
}
SLS( CountingPartitionOfTree )
{
CALL_SLS( FunctionOnTree );
CERR( "F(P)P" );
CERR( "iF(P)=vPdp[i][v]" );
CERR( "i,vO(N^2 v_max×f)" );
CERR( "" );
}
SLS( CountingString )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CERR( "" );
CALL_SLS( CountingSubArrayImage );
} else if( num == num_temp++ ){
CALL_SLS( CountingMatchingSubString );
}
}
SLS( CountingMatchingSubString )
{
CERR( "- Z" );
CERR( " \\Utility\\String\\Z-Algorithm" );
CERR( "- " );
CERR( " - O(N^2)" );
CERR( " \\Utility\\String\\Palindrome" );
CERR( " - O(N^2)Manacher" );
CERR( " https://snuke.hatenablog.com/entry/2014/12/02/235837" );
CERR( " \\Utility\\String\\RollingHash" );
CERR( "" );
}
SLS( Solving )
{
CERR( "- 調" );
CERR( "- " );
CERR( "- " );
CERR( "" );
}
SLS( Query )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( QueryArray );
} else if( num == num_temp++ ){
CALL_SLS( QueryGraph );
}
}
SLS( QueryArray )
{
ASK_NUMBER(
"+使" ,
"使" ,
"*使" ,
"*使" ,
"(*,\\cdot)使" ,
"(+,\\cdot)使" ,
"max使"
);
if( num == num_temp++ ){
CERR( "- BIT" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT\\Template" );
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template" );
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\Tree\\DifferenceSeqeuence" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "- BIT" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT\\IntervalMax\\Template" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "- BIT" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT\\Template\\Monoid" );
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template\\Monoid" );
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SegmentTree" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "- " );
CERR( " \\Mathematics\\Function\\Encoder" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template\\Dual" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template\\LazyEvaluation" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "max" );
CERR( "調max調" );
CERR( "" );
CERR( "" );
CERR( "maxmax調" );
CERR( "maxmax" );
CERR( "調" );
CERR( "調" );
CERR( "" );
CERR( "max{0,1}" );
CERR( "使" );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "B_qmax(A_i,B_q)" );
CERR( "- A'={(A_i,i)|i}O(N log N)" );
CERR( "- (B_q,q)_qB'O(Q log Q)" );
CERR( "- NC=(0,...,0)O(N)" );
CERR( "B'(B_q,q)" );
CERR( "A'A_i<B_qi" );
CERR( "- A'(A_i,i)O(N)" );
CERR( "- A_i0O(N log N)" );
CERR( "- C_i1O(log N)" );
CERR( "- A+C×B_qO(log N)" );
CERR( "O((N + Q)log N + Q log Q)" );
}
}
SLS( QueryGraph )
{
ASK_YES_NO( "" );
if( reply == "yes" ){
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\Tree\\DifferenceSeqeuence" );
} else {
CERR( "UnionFind" );
CERR( "\\Mathematics\\Geometry\\Graph\\DepthFirst\\Tree" );
CERR( "\\Utility\\VLTree" );
CERR( "\\Utility\\VLTree\\UnionFndForest" );
}
CERR( "" );
}
SLS( Decision )
{
ASK_NUMBER(
"0" ,
"" ,
"" ,
"" ,
""
);
if( num == num_temp++ ){
CALL_SLS( DecisionConnectedness );
} else if( num == num_temp++ ){
CALL_SLS( DecisionHigherConnectedness );
} else if( num == num_temp++ ){
CALL_SLS( DecisionGame );
} else if( num == num_temp++ ){
CALL_SLS( DecisionAccessibility );
} else if( num == num_temp++ ){
CALL_SLS( DecisionSatisfiability );
}
}
SLS( DecisionConnectedness )
{
CERR( "UnionFind" );
CERR( "\\Mathematics\\Geometry\\Graph\\BreadthFirst" );
CERR( "\\Utility\\VLTree\\UnionFindForest" );
CERR( "" );
CERR( "" );
}
SLS( DecisionHigherConnectedness )
{
CERR( "- " );
CERR( " \\Mathematics\\Geometry\\Graph\\DepthFirst" );
CERR( "- " );
CERR( "" );
}
SLS( DecisionGame )
{
CERR( "" );
CERR( "" );
}
SLS( DecisionAccessibility )
{
ASK_YES_NO( "" );
if( reply == "yes" ){
CERR( "" );
CERR( "- " );
CERR( "- " );
CERR( "" );
} else {
CERR( "" );
CALL_SLS( MinimisationMovingCost );
}
CERR( "" );
}
SLS( DecisionSatisfiability )
{
ASK_NUMBER(
"" ,
""
);
if( num == num_temp++ ){
CERR( "" );
CALL_SLS( DecisionConnectedness );
CERR( "" );
CERR( "" );
SLS( QueryArray );
} else if( num == num_temp++ ){
CERR( "" );
SLS( MaximisationBipartiteMatching );
}
}
SLS( Construction )
{
ASK_NUMBER(
"" ,
"" ,
"" ,
""
);
if( num == num_temp++ ){
CERR( "p" );
} else if( num == num_temp++ ){
CERR( "" );
CALL_SLS( DecisionAccessibility );
} else if( num == num_temp++ ){
CERR( "" );
CALL_SLS( DecisionGame );
} else if( num == num_temp++ ){
CERR( "" );
}
}
// URLConvex Hull Trick
// https://rsk0315.hatenablog.com/entry/2022/04/29/141726
// 0O(1)
// maxO(log size)
// O(log size)
template <typename INT , INT llim_a , INT ulim_a , INT llim_b , INT ulim_b , INT llim_c , INT ulim_c>
class MaxLinearFunction
{
private:
// m_abc[a] = { yb , xc }
map<INT,pair<INT,INT> > m_abc;
// m_ca[xc] = a
map<INT,INT> m_ca;
public:
inline MaxLinearFunction();
void SetMax( const INT& a , const INT& b );
INT Get( const INT& x ) const;
private:
static INT Intersection( const INT& a0 , const INT& b0 , const INT& a1 , const INT& b1 );
};
template <typename INT , INT llim_a , INT ulim_a , INT llim_b , INT ulim_b , INT llim_c , INT ulim_c>
class MinLinearFunction :
public MaxLinearFunction<INT,-ulim_a,-llim_a,-ulim_b,-llim_b,llim_c,ulim_c>
{
public:
inline MinLinearFunction();
inline void SetMin( const INT& a , const INT& b );
inline INT Get( const INT& x ) const;
};
template <typename INT , INT llim_a , INT ulim_a , INT llim_b , INT ulim_b , INT llim_c , INT ulim_c> inline MaxLinearFunction<INT,llim_a,ulim_a
    ,llim_b,ulim_b,llim_c,ulim_c>::MaxLinearFunction() : m_abc() , m_ca()
{
static_assert( ! is_same<INT,int>::value );
static_assert( llim_a <= ulim_a && llim_b <= ulim_b && llim_c <= ulim_c );
static_assert( min( min( ulim_a * llim_c , ulim_a * ulim_c ) , min( llim_a * llim_c , llim_a * ulim_c ) ) + llim_b <= max( max( ulim_a * llim_c ,
      ulim_a * ulim_c ) , max( llim_a * llim_c , llim_a * ulim_c ) ) + ulim_b );
}
template <typename INT , INT llim_a , INT ulim_a , INT llim_b , INT ulim_b , INT llim_c , INT ulim_c> inline MinLinearFunction<INT,llim_a,ulim_a
    ,llim_b,ulim_b,llim_c,ulim_c>::MinLinearFunction() : MaxLinearFunction<INT,-ulim_a,-llim_a,-ulim_b,-llim_b,llim_c,ulim_c>() { static_assert( !
    is_same<INT,unsigned int>::value && ! is_same<INT,unsigned long long>::value ); }
template <typename INT , INT llim_a , INT ulim_a , INT llim_b , INT ulim_b , INT llim_c , INT ulim_c>
void MaxLinearFunction<INT,llim_a,ulim_a,llim_b,ulim_b,llim_c,ulim_c>::SetMax( const INT& a , const INT& b )
{
assert( llim_a <= a && a <= ulim_a );
if( m_abc.empty() ){
m_abc[a] = { b , llim_c };
m_ca[llim_c] = a;
return;
}
auto itr_right = m_abc.lower_bound( a ) , begin = m_abc.begin();
const auto end = m_abc.end();
if( itr_right != end ){
const INT& a0 = itr_right->first;
const auto& [b0,c0] = itr_right->second;
if( a == a0 ){
if( b < b0 ){
m_ca.erase( c0 );
if( itr_right == begin ){
begin++;
}
itr_right = m_abc.erase( itr_right );
} else {
return;
}
}
}
auto itr_left = itr_right;
if( itr_left == begin ){
const INT& a0 = itr_left->first;
const auto& [b0,c0] = itr_left->second;
if( llim_c >= Intersection( a , b , a0 , b0 ) ){
return;
}
itr_left = end;
} else if( itr_left == end ){
itr_left = m_abc.lower_bound( m_abc.rbegin()->first );
const INT& a0 = itr_left->first;
const auto& [b0,c0] = itr_left->second;
if( Intersection( a0 , b0 , a , b ) >= ulim_c ){
return;
}
} else {
--itr_left;
const INT& a0 = itr_left->first;
const auto& [b0,c0] = itr_left->second;
const INT& a1 = itr_right->first;
const auto& [b1,c1] = itr_right->second;
if( Intersection( a0 , b0 , a , b ) >= Intersection( a , b , a1 , b1 ) ){
return;
}
}
if( itr_right != end ){
while( true ){
const auto itr_right_copy = itr_right++;
const INT& a0 = itr_right_copy->first;
auto& [b0,c0] = itr_right_copy->second;
m_ca.erase( c0 );
c0 = Intersection( a , b , a0 , b0 );
if( itr_right == end ){
m_ca[c0] = a0;
break;
}
const auto& [b1,c1] = itr_right->second;
if( c0 < c1 ){
m_ca[c0] = a0;
break;
} else {
m_abc.erase( itr_right_copy );
}
}
}
INT c;
if( itr_left == end ){
c = llim_c;
} else {
while( true ){
const INT& a1 = itr_left->first;
const auto& [b1,c1] = itr_left->second;
c = Intersection( a1 , b1 , a , b );
if( c1 >= c ){
m_ca.erase( c1 );
if( itr_left == begin ){
m_abc.erase( itr_left );
break;
} else {
m_abc.erase( itr_left-- );
}
} else {
break;
}
}
}
if( c < llim_c ){
c = llim_c;
} else if( c > ulim_c ){
c = ulim_c;
}
m_abc[a] = { b , c };
m_ca[c] = a;
return;
}
template <typename INT , INT llim_a , INT ulim_a , INT llim_b , INT ulim_b , INT llim_c , INT ulim_c>
void MinLinearFunction<INT,llim_a,ulim_a,llim_b,ulim_b,llim_c,ulim_c>::SetMin( const INT& a , const INT& b ) { MaxLinearFunction<INT,-ulim_a,-llim_a
    ,-ulim_b,-llim_b,llim_c,ulim_c>::SetMax( -a , -b ); }
template <typename INT , INT llim_a , INT ulim_a , INT llim_b , INT ulim_b , INT llim_c , INT ulim_c>
INT MaxLinearFunction<INT,llim_a,ulim_a,llim_b,ulim_b,llim_c,ulim_c>::Get( const INT& x ) const
{
assert( !m_abc.empty() );
assert( llim_c <= x && x <= ulim_c );
auto itr_next = m_ca.upper_bound( x );
const auto& [c,a] = itr_next == m_ca.end() ? *( m_ca.rbegin() ) : *( --itr_next );
auto itr = m_abc.lower_bound( a );
const INT& a1 = itr->first;
const auto& [b1,c1] = itr->second;
return a1 * x + b1;
}
template <typename INT , INT llim_a , INT ulim_a , INT llim_b , INT ulim_b , INT llim_c , INT ulim_c>
INT MinLinearFunction<INT,llim_a,ulim_a,llim_b,ulim_b,llim_c,ulim_c>::Get( const INT& x ) const { return -MaxLinearFunction<INT,-ulim_a,-llim_a
    ,-ulim_b,-llim_b,llim_c,ulim_c>( x ); }
template <typename INT , INT llim_a , INT ulim_a , INT llim_b , INT ulim_b , INT llim_c , INT ulim_c> inline INT MaxLinearFunction<INT,llim_a,ulim_a
    ,llim_b,ulim_b,llim_c,ulim_c>::Intersection( const INT& a0 , const INT& b0 , const INT& a1 , const INT& b1 ) { const INT diff_a = a1 - a0;
    assert( diff_a > 0 ); return ( b0 - b1 + diff_a - 1 ) / diff_a; }
int main()
{
UNTIE;
LIBRARY_SEARCH;
TEST_CASE_NUM( 1 );
START_MAIN;
CEXPR( ll , bound_a , 100 );
CIN_ASSERT( a , 1 , bound_a );
DEXPR( int , bound_Q , 100000 , 100 );
CIN_ASSERT( Q , 2 , bound_Q );
CEXPR( ll , bound_st , 100000000 );
CEXPR( int , bound_type , 2 );
CEXPR( ll , bound_b , bound_a * bound_st * 2 );
CEXPR( ll , bound_c , - bound_a * bound_st * bound_st );
MaxLinearFunction<ll,0,bound_b,bound_c,0,0,bound_st> mlf{};
ll t_last = -1;
REPEAT( Q ){
CIN_ASSERT( type , 1 , bound_type );
if( type == 1 ){
CIN_ASSERT( s , 0 , bound_st );
CIN_ASSERT( t , 0 , bound_st );
ll b = a * ( s + t );
ll c = - a * s * t;
mlf.SetMax( b , c );
} else {
CIN_ASSERT( t , t_last , bound_st );
t_last = t;
COUT( max( 0LL , -a * t * t + mlf.Get( t ) ) );
}
}
assert( t_last != -1 );
FINISH_MAIN;
QUIT;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0