結果
| 問題 |
No.2263 Perms
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2023-09-06 18:25:35 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 123 ms / 2,000 ms |
| コード長 | 15,295 bytes |
| コンパイル時間 | 12,322 ms |
| コンパイル使用メモリ | 290,936 KB |
| 最終ジャッジ日時 | 2025-02-16 19:04:07 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 39 |
ソースコード
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define CERR( MESSAGE ) cerr << MESSAGE << endl;
#define COUT( ANSWER ) cout << "出力: " << ANSWER << endl
#define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " << ( MIN ) << ( ( MIN ) <= A ? "<=" : ">" ) << A << ( A <= ( MAX ) ? "<=" : ">" ) << ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
#define AUTO_CHECK bool auto_checked = true; AutoCheck( auto_checked ); if( auto_checked ){ return 0; };
#define START_WATCH( PROCESS_NAME ) StartWatch( PROCESS_NAME )
#define STOP_WATCH( HOW_MANY_TIMES ) StopWatch( HOW_MANY_TIMES )
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define CERR( MESSAGE )
#define COUT( ANSWER ) cout << ANSWER << "\n"
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define AUTO_CHECK
#define START_WATCH( PROCESS_NAME )
#define STOP_WATCH( HOW_MANY_TIMES )
#endif
// #define RANDOM_TEST
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define QUIT goto END_MAIN
#define TEST_CASE_NUM( BOUND ) DEXPR( int , bound_T , BOUND , min( BOUND , 100 ) ); int T = 1; if constexpr( bound_T > 1 ){ SET_ASSERT( T , 1 , bound_T ); }
#define START_MAIN REPEAT( T ){ if constexpr( bound_T > 1 ){ CERR( "testcase " << VARIABLE_FOR_REPEAT_T << ":" ); }
#define FINISH_MAIN QUIT; } END_MAIN: CERR( "" );
#ifdef DEBUG
inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }
void AutoCheck( bool& auto_checked );
void StartWatch( const string& process_name = "nothing" );
void StopWatch( const int& how_many_times = 1 );
#endif
#if defined( DEBUG ) && defined( RANDOM_TEST )
ll GetRand( const ll& Rand_min , const ll& Rand_max );
#define SET_ASSERT( A , MIN , MAX ) CERR( #A << " = " << ( A = GetRand( MIN , MAX ) ) )
#define RETURN( ANSWER ) if( ( ANSWER ) == guchoku ){ CERR( ( ANSWER ) << " == " << guchoku ); goto END_MAIN; } else { CERR( ( ANSWER ) << " != " << guchoku ); QUIT; }
#else
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#define RETURN( ANSWER ) COUT( ( ANSWER ) ); QUIT
#endif
// Resetはm_foundとm_prevを初期化
// Shiftはm_foundとm_prevを非初期化
#define DECLARATION_OF_FIRST_SEARCH( BREADTH ) \
template <int V_max> \
class BREADTH ## FirstSearch_Body \
{ \
\
protected: \
int m_V; \
int m_init; \
list<int> m_next; \
bool m_found[V_max]; \
int m_prev[V_max]; \
\
public: \
inline BREADTH ## FirstSearch_Body( const int& V ); \
inline BREADTH ## FirstSearch_Body( const int& V , const int& init ); \
\
inline void Reset( const int& init ); \
inline void Shift( const int& init ); \
\
inline const int& size() const; \
inline const int& init() const; \
inline bool& found( const int& i ); \
inline const int& prev( const int& i ) const; \
\
int Next(); \
\
private: \
virtual list<int> e( const int& t ) = 0; \
\
}; \
\
template <int V_max,list<int> E(const int&)> \
class BREADTH ## FirstSearch : \
public BREADTH ## FirstSearch_Body<V_max> \
{ \
\
public: \
\
template<typename... Args> inline BREADTH ## FirstSearch( const Args&... args ); \
\
private: \
inline list<int> e( const int& t ); \
\
}; \
\
template <int V_max,list<int> E(const int&)> void BREADTH ## FirstConnectedComponent( const int& V , int ( &vertex )[V_max] , int& count ); \
#define DEFINITION_OF_FIRST_SEARCH( BREADTH , PUSH ) \
template <int V_max> inline BREADTH ## FirstSearch_Body<V_max>::BREADTH ## FirstSearch_Body( const int& V ) : m_V( V ) , m_init() , m_next() , m_found() , m_prev() { assert( m_V <= V_max ); for( int i = 0 ; i < m_V ; i++ ){ m_prev[i] = -1; } } \
template <int V_max> inline BREADTH ## FirstSearch_Body<V_max>::BREADTH ## FirstSearch_Body( const int& V , const int& init ) : BREADTH ## FirstSearch_Body( V ) { m_init = init; m_next.push_back( m_init ); m_found[m_init] = true; } \
template <int V_max,list<int> E(const int&)> template <typename... Args> inline BREADTH ## FirstSearch<V_max,E>::BREADTH ## FirstSearch( const Args&... args ) : BREADTH ## FirstSearch_Body<V_max>( args... ) {} \
\
template <int V_max> inline void BREADTH ## FirstSearch_Body<V_max>::Reset( const int& init ) { m_init = init; assert( m_init < m_V ); m_next.clear(); m_next.push_back( m_init ); for( int i = 0 ; i < m_V ; i++ ){ m_found[i] = i == m_init; m_prev[i] = -1; } } \
template <int V_max> inline void BREADTH ## FirstSearch_Body<V_max>::Shift( const int& init ) { m_init = init; assert( m_init < m_V ); m_next.clear(); if( ! m_found[m_init] ){ m_next.push_back( m_init ); m_found[m_init] = true; } } \
\
template <int V_max> inline const int& BREADTH ## FirstSearch_Body<V_max>::size() const { return m_V; } \
template <int V_max> inline const int& BREADTH ## FirstSearch_Body<V_max>::init() const { return m_init; } \
template <int V_max> inline bool& BREADTH ## FirstSearch_Body<V_max>::found( const int& i ) { assert( i < m_V ); return m_found[i]; } \
template <int V_max> inline const int& BREADTH ## FirstSearch_Body<V_max>::prev( const int& i ) const { assert( i < m_V ); return m_prev[i]; } \
\
template <int V_max> \
int BREADTH ## FirstSearch_Body<V_max>::Next() \
{ \
\
if( m_next.empty() ){ \
\
return -1; \
\
} \
\
const int i_curr = m_next.front(); \
m_next.pop_front(); \
list<int> edge = e( i_curr ); \
\
while( ! edge.empty() ){ \
\
const int& i = edge.front(); \
bool& found_i = found( i ); \
\
if( ! found_i ){ \
\
m_next.PUSH( i ); \
m_prev[i] = i_curr; \
found_i = true; \
\
} \
\
edge.pop_front(); \
\
} \
\
return i_curr; \
\
} \
\
template <int V_max,list<int> E(const int&)> inline list <int> BREADTH ## FirstSearch<V_max,E>::e( const int& t ) { return E( t ); } \
\
template <int V_max,list<int> E(const int&)> void BREADTH ## FirstConnectedComponentSearch( const int& V , int ( &vertex )[V_max] , int& count ) \
{ \
\
BREADTH ## FirstSearch<V_max,E> bfs{ V }; \
count = 0; \
\
for( int i = 0 ; i < V ; i++ ){ \
\
vertex[i] = -1; \
\
} \
\
for( int i = 0 ; i < V ; i++ ){ \
\
if( vertex[i] == -1 ){ \
\
bfs.Shift( i ); \
int j = bfs.Next(); \
\
while( j != -1 ? vertex[j] == 0 : false ){ \
\
vertex[j] = count; \
j = bfs.Next(); \
\
} \
\
count++; \
\
} \
\
} \
\
return; \
\
} \
DECLARATION_OF_FIRST_SEARCH( Breadth );
DEFINITION_OF_FIRST_SEARCH( Breadth , push_back );
// (S,T,edge)が二部グラフである場合のみサポート。
// edgeのサイズをeと置く。最大二部マッチング問題を
// O(ST+(e+log_2 S)√(S+T))で解く。
// 特に
// - eがO(ST)の時はO(ST√(S+T))、
// - eがO(S+T)の時はO(ST)
// で解く。
template <int S_max , int T_max>
class HopcroftKarp
{
private:
// BFSのテンプレート引数にEdgeを渡すために、staticメンバのみを使う。
static int g_S;
static int g_T;
static set<int> g_unchosen_source;
static list<int> g_edge[S_max];
static int g_prev[T_max];
public:
HopcroftKarp() = delete;
static list<pair<int,int> > Solve( const int& S , const int& T , const list<pair<int,int> >& edge );
// BFSのテンプレート引数に渡す。
// (1) w=0の時は、最大二部マッチングに使わなかったSの頂点リストを返す。
// (2) 0<w<=Sの時は、s=w-1からの有向辺の終端全体のリストを返す。
// (3) S<w<=S+Tの時は、t=w-S-1が最大二部マッチングに使われたならば
// 対応する有向辺の始端sのみのリスト、使われなかったならば空リストを返す。
static list<int> Edge( const int& w );
};
template <int S_max , int T_max> int HopcroftKarp<S_max,T_max>::g_S = 0;
template <int S_max , int T_max> int HopcroftKarp<S_max,T_max>::g_T = 0;
template <int S_max , int T_max> set<int> HopcroftKarp<S_max,T_max>::g_unchosen_source{};
template <int S_max , int T_max> list<int> HopcroftKarp<S_max,T_max>::g_edge[S_max] = {};
template <int S_max , int T_max> int HopcroftKarp<S_max,T_max>::g_prev[T_max] = {};
template <int S_max , int T_max>
list<pair<int,int> > HopcroftKarp<S_max,T_max>::Solve( const int& S , const int& T , const list<pair<int,int> >& edge )
{
g_S = S;
g_T = T;
assert( g_S <= S_max && g_T <= T_max );
for( int s = 0 ; s < g_S ; s++ ){
g_unchosen_source.insert( s );
}
for( int s = 0 ; s < g_S ; s++ ){
g_edge[s].clear();
}
for( auto itr = edge.begin() , end = edge.end() ; itr != end ; itr++ ){
const int& s = itr->first;
const int& t = itr->second;
assert( 0 <= s && s < g_S && 0 <= s && t < g_T );
g_edge[s].push_back( 1 + g_S + t );
}
for( int t = 0 ; t < g_T ; t++ ){
g_prev[t] = -1;
}
BreadthFirstSearch<1 + S_max + T_max , Edge> bfs{ 1 + g_S + g_T };
bool chosen_source[S_max] = {};
bool chosen_target[T_max] = {};
bool chosen_edge[S_max][T_max] = {};
int depth[1 + S_max + T_max] = {};
int depth_min = -1;
int root[S_max + T_max] = {};
list<int> new_chosen_target{ 0 };
int v , w;
bool found;
while( ! new_chosen_target.empty() ){
new_chosen_target.clear();
bfs.Reset( 0 );
v = bfs.Next();
found = false;
while( ( v = bfs.Next() ) != -1 ){
w = bfs.prev( v );
int& depth_v = depth[v] = depth[w] + 1;
if( found ? depth_v > depth_min : false ){
break;
}
if( w == 0 ){
const int s = v - 1;
assert( 0 <= s && s < g_S );
root[s] = s;
} else {
root[v - 1] = root[w - 1];
}
if( depth_v % 2 == 0 ){
const int t = v - 1 - g_S;
assert( 0 <= t && t < g_T );
bool& chosen_target_t = chosen_target[t];
if( !chosen_target_t ){
const int& s = root[v - 1];
assert( 0 <= s && s < g_S );
bool& chosen_source_s = chosen_source[s];
if( !chosen_source_s ){
chosen_source_s = true;
chosen_target_t = true;
new_chosen_target.push_back( v );
if( !found ){
found = true;
depth_min = depth_v;
}
}
}
}
}
for( auto itr = new_chosen_target.begin() , end = new_chosen_target.end() ; itr != end ; itr++ ){
int* p[2] = { &w , &v };
int*& p0 = p[0];
int*& p1 = p[1];
v = *itr;
while( ( w = bfs.prev( v ) ) != 0 ){
const int s = *p0 - 1;
const int t = *p1 - 1 - g_S;
assert( 0 <= s && s < g_S && 0 <= t && t < g_T );
if( chosen_edge[s][t] ^= true ){
g_prev[t] = s;
}
swap( w , v );
swap( p0 , p1 );
}
const int s = v - 1;
assert( 0 <= s && s < g_S && g_unchosen_source.count( s ) == 1 );
g_unchosen_source.erase( s );
}
}
list<pair<int,int> > answer{};
for( int t = 0 ; t < g_T ; t++ ){
const int& s = g_prev[t];
if( s != -1 ){
assert( 0 <= s && s < g_S && 0 <= t && t < g_T );
answer.push_back( { s , t } );
}
}
return answer;
}
template <int S_max , int T_max>
list<int> HopcroftKarp<S_max,T_max>::Edge( const int& w )
{
list<int> answer{};
if( w == 0 ){
for( auto itr = g_unchosen_source.begin() , end = g_unchosen_source.end() ; itr != end ; itr++ ){
answer.push_back( 1 + *itr );
}
} else if( w <= g_S ){
answer = g_edge[ w - 1 ];
} else {
const int t = w - 1 - g_S;
assert( t < g_T );
const int& s = g_prev[t];
if( s != -1 ){
assert( 0 <= s && s < g_S );
answer.push_back( 1 + s );
}
}
return answer;
}
int main()
{
UNTIE;
AUTO_CHECK;
TEST_CASE_NUM( 1 );
START_MAIN;
CEXPR( int , bound , 50 );
CIN_ASSERT( N , 2 , bound );
CIN_ASSERT( M , 2 , bound );
int A[bound][bound];
FOR( i , 0 , N ){
int ( &Ai )[bound] = A[i];
FOR( j , 0 , N ){
CIN_ASSERT( Aij , 0 , M );
Ai[j] = Aij;
}
}
int answer[bound][bound];
FOR( m , 0 , M ){
list<pair<int,int> > edge{};
FOR( i , 0 , N ){
int ( &Ai )[bound] = A[i];
FOR( j , 0 , N ){
if( Ai[j] != 0 ){
edge.push_back( { i , j } );
}
}
}
edge = HopcroftKarp<bound,bound>::Solve( N , N , edge );
if( int( edge.size() ) != N ){
RETURN( -1 );
}
int ( &answer_m )[bound] = answer[m];
FOR_ITR( edge ){
int& i = itr->first;
int& j = itr->second;
assert( 0 <= i && i < N && 0 <= j && j < N );
A[i][j]--;
answer_m[i] = j + 1;
}
}
FOR( i , 0 , N ){
int ( &Ai )[bound] = A[i];
FOR( j , 0 , N ){
if( Ai[j] != 0 ){
RETURN( -1 );
}
}
}
FOR( m , 0 , M ){
int ( &answer_m )[bound] = answer[m];
FOR( i , 0 , N ){
cout << answer_m[i] << " \n"[i==N-1];
}
}
FINISH_MAIN;
}