結果

問題 No.1321 塗るめた
ユーザー akakimidoriakakimidori
提出日時 2023-09-10 15:49:24
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 174 ms / 2,000 ms
コード長 24,015 bytes
コンパイル時間 14,671 ms
コンパイル使用メモリ 396,564 KB
実行使用メモリ 7,936 KB
最終ジャッジ日時 2024-06-28 06:57:31
合計ジャッジ時間 20,020 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 5 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 AC 1 ms
5,376 KB
testcase_10 AC 1 ms
5,376 KB
testcase_11 AC 1 ms
5,376 KB
testcase_12 AC 83 ms
5,376 KB
testcase_13 AC 29 ms
5,376 KB
testcase_14 AC 41 ms
5,376 KB
testcase_15 AC 83 ms
5,376 KB
testcase_16 AC 85 ms
5,376 KB
testcase_17 AC 3 ms
5,376 KB
testcase_18 AC 173 ms
7,896 KB
testcase_19 AC 41 ms
5,376 KB
testcase_20 AC 82 ms
5,376 KB
testcase_21 AC 94 ms
5,876 KB
testcase_22 AC 172 ms
7,796 KB
testcase_23 AC 174 ms
7,936 KB
testcase_24 AC 171 ms
7,768 KB
testcase_25 AC 174 ms
7,840 KB
testcase_26 AC 174 ms
7,828 KB
testcase_27 AC 170 ms
7,844 KB
testcase_28 AC 170 ms
7,844 KB
testcase_29 AC 169 ms
7,676 KB
testcase_30 AC 174 ms
7,840 KB
testcase_31 AC 93 ms
6,232 KB
testcase_32 AC 83 ms
5,376 KB
testcase_33 AC 80 ms
5,376 KB
testcase_34 AC 84 ms
5,376 KB
testcase_35 AC 83 ms
5,376 KB
testcase_36 AC 5 ms
5,376 KB
testcase_37 AC 95 ms
6,252 KB
testcase_38 AC 95 ms
6,252 KB
testcase_39 AC 96 ms
6,120 KB
testcase_40 AC 95 ms
6,116 KB
testcase_41 AC 95 ms
6,008 KB
testcase_42 AC 1 ms
5,376 KB
testcase_43 AC 83 ms
5,376 KB
testcase_44 AC 83 ms
5,376 KB
testcase_45 AC 87 ms
5,376 KB
testcase_46 AC 20 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// ボールの選び方を一つ固定する
// これがちょうどK種類の色からなるような色の塗り方は?
// C個選んだとして
// C! * [x^C](e^x - 1)^K * C(M, K) * C(N, C) * M^(N-C)
// が答え

fn main() {
    input!(n: usize, m: usize, k: usize);
    let pc = precalc::Precalc::new(n);
    let mut f = vec![M::zero(); n + 1];
    for (i, f) in f.iter_mut().enumerate().skip(1) {
        *f = pc.ifact(i);
    }
    let g = pow_of_formal_power_series(f, k, n + 1);
    let mut ans = M::zero();
    for i in k..=n {
        ans += pc.fact(i) * g[i] * pc.comb(m, k) * pc.comb(n, i) * M::from(m).pow((n - i) as u64);
    }
    println!("{}", ans);
}

pub fn pow_of_formal_power_series(mut f: Vec<M>, m: usize, n: usize) -> Vec<M> {
    if m == 0 {
        let mut res = vec![M::zero(); n];
        res[0] = M::one();
        return res;
    }
    let k = f.iter().position(|f| !f.is_zero()).unwrap_or(n);
    if k.saturating_mul(m) >= n {
        return vec![M::zero(); n];
    }
    f.rotate_left(k);
    let need = n - m * k;
    let f0 = f[0];
    let inv = f0.inv();
    f.iter_mut().for_each(|f| *f *= inv);
    let mut g = f.log(need);
    g.iter_mut().for_each(|g| *g *= M::from(m));
    let mut res = g.exp(need);
    let mul = f0.pow(m as u64);
    res.iter_mut().for_each(|f| *f *= mul);
    res.splice(0..0, (0..(m * k)).map(|_| M::zero()));
    res
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
// ---------- begin ModInt ----------
// モンゴメリ乗算を用いる
// ほぼCodeforces用
// 注意
// new_unchecked は値xが 0 <= x < modulo であることを仮定
// ModInt の中身は正規化された値で持ってるので直接読んだり書いたりするとぶっ壊れる
// 奇素数のみ
mod modint {

    use std::marker::*;
    use std::ops::*;

    pub trait Modulo {
        fn modulo() -> u32;
        fn rem() -> u32;
        fn ini() -> u64;
        fn reduce(x: u64) -> u32 {
            debug_assert!(x < (Self::modulo() as u64) << 32);
            let b = (x as u32 * Self::rem()) as u64;
            let t = x + b * Self::modulo() as u64;
            let mut c = (t >> 32) as u32;
            if c >= Self::modulo() {
                c -= Self::modulo();
            }
            c as u32
        }
    }

    #[allow(dead_code)]
    pub enum Mod1_000_000_007 {}

    impl Modulo for Mod1_000_000_007 {
        fn modulo() -> u32 {
            1_000_000_007
        }
        fn rem() -> u32 {
            2226617417
        }
        fn ini() -> u64 {
            582344008
        }
    }

    #[allow(dead_code)]
    pub enum Mod998_244_353 {}

    impl Modulo for Mod998_244_353 {
        fn modulo() -> u32 {
            998_244_353
        }
        fn rem() -> u32 {
            998244351
        }
        fn ini() -> u64 {
            932051910
        }
    }

    #[allow(dead_code)]
    pub fn generate_umekomi_modulo(p: u32) {
        assert!(
            p < (1 << 31)
                && p > 2
                && p & 1 == 1
                && (2u32..).take_while(|v| v * v <= p).all(|k| p % k != 0)
        );
        let mut t = 1u32;
        let mut s = !p + 1;
        let mut n = !0u32 >> 2;
        while n > 0 {
            if n & 1 == 1 {
                t *= s;
            }
            s *= s;
            n >>= 1;
        }
        let mut ini = (1u64 << 32) % p as u64;
        ini = (ini << 32) % p as u64;
        assert!(t * p == !0);
        println!("pub enum Mod{} {{}}", p);
        println!("impl Modulo for Mod{} {{", p);
        println!("    fn modulo() -> u32 {{");
        println!("        {}", p);
        println!("    }}");
        println!("    fn rem() -> u32 {{");
        println!("        {}", t);
        println!("    }}");
        println!("    fn ini() -> u64 {{");
        println!("        {}", ini);
        println!("    }}");
        println!("}}");
        let mut f = vec![];
        let mut n = p - 1;
        for i in 2.. {
            if i * i > n {
                break;
            }
            if n % i == 0 {
                f.push(i);
                while n % i == 0 {
                    n /= i;
                }
            }
        }
        if n > 1 {
            f.push(n);
        }
        let mut order = 1;
        let mut n = p - 1;
        while n % 2 == 0 {
            n /= 2;
            order <<= 1;
        }
        let z = (2u64..)
            .find(|z| {
                f.iter()
                    .all(|f| mod_pow(*z, ((p - 1) / *f) as u64, p as u64) != 1)
            })
            .unwrap();
        let zeta = mod_pow(z, ((p - 1) / order) as u64, p as u64);
        println!("impl transform::NTTFriendly for Mod{} {{", p);
        println!("    fn order() -> usize {{");
        println!("        {}", order);
        println!("    }}");
        println!("    fn zeta() -> u32 {{");
        println!("        {}", zeta);
        println!("    }}");
        println!("}}");
    }

    pub struct ModInt<T>(u32, PhantomData<T>);

    impl<T> Clone for ModInt<T> {
        fn clone(&self) -> Self {
            ModInt::build(self.0)
        }
    }

    impl<T> Copy for ModInt<T> {}

    impl<T: Modulo> Add for ModInt<T> {
        type Output = ModInt<T>;
        fn add(self, rhs: Self) -> Self::Output {
            let mut d = self.0 + rhs.0;
            if d >= T::modulo() {
                d -= T::modulo();
            }
            Self::build(d)
        }
    }

    impl<T: Modulo> AddAssign for ModInt<T> {
        fn add_assign(&mut self, rhs: Self) {
            *self = *self + rhs;
        }
    }

    impl<T: Modulo> Sub for ModInt<T> {
        type Output = ModInt<T>;
        fn sub(self, rhs: Self) -> Self::Output {
            let mut d = self.0 - rhs.0;
            if self.0 < rhs.0 {
                d += T::modulo();
            }
            Self::build(d)
        }
    }

    impl<T: Modulo> SubAssign for ModInt<T> {
        fn sub_assign(&mut self, rhs: Self) {
            *self = *self - rhs;
        }
    }

    impl<T: Modulo> Mul for ModInt<T> {
        type Output = ModInt<T>;
        fn mul(self, rhs: Self) -> Self::Output {
            Self::build(T::reduce(self.0 as u64 * rhs.0 as u64))
        }
    }

    impl<T: Modulo> MulAssign for ModInt<T> {
        fn mul_assign(&mut self, rhs: Self) {
            *self = *self * rhs;
        }
    }

    impl<T: Modulo> Neg for ModInt<T> {
        type Output = ModInt<T>;
        fn neg(self) -> Self::Output {
            if self.0 == 0 {
                Self::zero()
            } else {
                Self::build(T::modulo() - self.0)
            }
        }
    }

    impl<T: Modulo> std::fmt::Display for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.get())
        }
    }

    impl<T: Modulo> std::fmt::Debug for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.get())
        }
    }

    impl<T: Modulo> std::str::FromStr for ModInt<T> {
        type Err = std::num::ParseIntError;
        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let val = s.parse::<u32>()?;
            Ok(ModInt::new(val))
        }
    }

    impl<T: Modulo> From<usize> for ModInt<T> {
        fn from(val: usize) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as usize) as u32)
        }
    }

    impl<T: Modulo> From<u64> for ModInt<T> {
        fn from(val: u64) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as u64) as u32)
        }
    }

    impl<T: Modulo> From<i64> for ModInt<T> {
        fn from(val: i64) -> ModInt<T> {
            let m = T::modulo() as i64;
            ModInt::new((val % m + m) as u32)
        }
    }

    #[allow(dead_code)]
    impl<T> ModInt<T> {
        fn build(d: u32) -> Self {
            ModInt(d, PhantomData)
        }
        pub fn zero() -> Self {
            Self::build(0)
        }
        pub fn is_zero(&self) -> bool {
            self.0 == 0
        }
    }

    #[allow(dead_code)]
    impl<T: Modulo> ModInt<T> {
        pub fn new_unchecked(d: u32) -> Self {
            Self::build(T::reduce(d as u64 * T::ini()))
        }
        pub fn new(d: u32) -> Self {
            Self::new_unchecked(d % T::modulo())
        }
        pub fn one() -> Self {
            Self::new_unchecked(1)
        }
        pub fn get(&self) -> u32 {
            T::reduce(self.0 as u64)
        }
        pub fn pow(&self, mut n: u64) -> Self {
            let mut t = Self::one();
            let mut s = *self;
            while n > 0 {
                if n & 1 == 1 {
                    t *= s;
                }
                s *= s;
                n >>= 1;
            }
            t
        }
        pub fn inv(&self) -> Self {
            assert!(!self.is_zero());
            self.pow((T::modulo() - 2) as u64)
        }
    }

    pub fn mod_pow(mut r: u64, mut n: u64, m: u64) -> u64 {
        let mut t = 1 % m;
        while n > 0 {
            if n & 1 == 1 {
                t = t * r % m;
            }
            r = r * r % m;
            n >>= 1;
        }
        t
    }
}
// ---------- end ModInt ----------
// ---------- begin Precalc ----------
mod precalc {
    use super::modint::*;
    #[allow(dead_code)]
    pub struct Precalc<T> {
        inv: Vec<ModInt<T>>,
        fact: Vec<ModInt<T>>,
        ifact: Vec<ModInt<T>>,
    }
    #[allow(dead_code)]
    impl<T: Modulo> Precalc<T> {
        pub fn new(n: usize) -> Precalc<T> {
            let mut inv = vec![ModInt::one(); n + 1];
            let mut fact = vec![ModInt::one(); n + 1];
            let mut ifact = vec![ModInt::one(); n + 1];
            for i in 2..(n + 1) {
                fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
            }
            ifact[n] = fact[n].inv();
            if n > 0 {
                inv[n] = ifact[n] * fact[n - 1];
            }
            for i in (1..n).rev() {
                ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
                inv[i] = ifact[i] * fact[i - 1];
            }
            Precalc {
                inv: inv,
                fact: fact,
                ifact: ifact,
            }
        }
        pub fn inv(&self, n: usize) -> ModInt<T> {
            assert!(n > 0);
            self.inv[n]
        }
        pub fn fact(&self, n: usize) -> ModInt<T> {
            self.fact[n]
        }
        pub fn ifact(&self, n: usize) -> ModInt<T> {
            self.ifact[n]
        }
        pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[n - k]
        }
        pub fn comb(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[k] * self.ifact[n - k]
        }
    }
}
// ---------- end Precalc ----------

use modint::*;

pub trait NTTFriendly: modint::Modulo {
    fn order() -> usize;
    fn zeta() -> u32;
}

type M = ModInt<Mod998_244_353>;

impl NTTFriendly for Mod998_244_353 {
    fn order() -> usize {
        8388608
    }
    fn zeta() -> u32 {
        15311432
    }
}

// 列に対する命令をテキトーに詰めあわせ
// modint, primitive type の2つあたりで使うことを想定
// +, -, *
// zero を要求してないのに仮定してる場所がある
//
// 何も考えずに書き始めたらいろいろよくわからないことになった
// 整理
// 長さが等しいときの加算、減算、dot積はok
// 長さが異なるときはどうする?
// 0埋めされてるというイメージなので
// 加算、減算は素直だがdot積はイマイチ
// dot積だけ長さが等しいとしておく?
// あるいは0埋めのイメージを消すか

use std::ops::*;

pub trait Zero: Sized + Add<Output = Self> {
    fn zero() -> Self;
}

pub fn zero<T: Zero>() -> T {
    T::zero()
}

impl<T: Modulo> Zero for ModInt<T> {
    fn zero() -> Self {
        Self::zero()
    }
}

impl Zero for usize {
    fn zero() -> Self {
        0
    }
}

pub trait ArrayAdd {
    type Item;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayAdd for [T]
where
    T: Zero + Copy,
{
    type Item = T;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.add_assign(rhs);
        c
    }
}

pub trait ArrayAddAssign {
    type Item;
    fn add_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayAddAssign for [T]
where
    T: Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
    }
}

impl<T> ArrayAddAssign for Vec<T>
where
    T: Zero + Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().add_assign(rhs);
    }
}

pub trait ArraySub {
    type Item;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArraySub for [T]
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.sub_assign(rhs);
        c
    }
}

pub trait ArraySubAssign {
    type Item;
    fn sub_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArraySubAssign for [T]
where
    T: Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
    }
}

impl<T> ArraySubAssign for Vec<T>
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().sub_assign(rhs);
    }
}

pub trait ArrayDot {
    type Item;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayDot for [T]
where
    T: Mul<Output = T> + Copy,
{
    type Item = T;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        assert!(self.len() == rhs.len());
        self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
    }
}

pub trait ArrayDotAssign {
    type Item;
    fn dot_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayDotAssign for [T]
where
    T: MulAssign + Copy,
{
    type Item = T;
    fn dot_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() == rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
    }
}

pub trait ArrayMul {
    type Item;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayMul for [T]
where
    T: Zero + Mul<Output = T> + Copy,
{
    type Item = T;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.is_empty() || rhs.is_empty() {
            return vec![];
        }
        let mut res = vec![zero(); self.len() + rhs.len() - 1];
        for (i, a) in self.iter().enumerate() {
            for (c, b) in res[i..].iter_mut().zip(rhs) {
                *c = *c + *a * *b;
            }
        }
        res
    }
}

pub trait ArrayNTT {
    type Item;
    fn ntt(&mut self);
    fn intt(&mut self);
    fn multiply(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayNTT for [ModInt<T>]
where
    T: NTTFriendly,
{
    type Item = ModInt<T>;
    fn ntt(&mut self) {
        let f = self;
        let n = f.len();
        assert!(n.count_ones() == 1);
        assert!(n <= T::order());
        let len = n.trailing_zeros() as usize;
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_e = [ModInt::zero(); 30];
        let cnt2 = T::order().trailing_zeros() as usize;
        let mut e = ModInt::new_unchecked(T::zeta());
        let mut ie = e.inv();
        for i in (2..=cnt2).rev() {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e * e;
            ie = ie * ie;
        }
        let mut now = ModInt::one();
        for i in 0..(cnt2 - 1) {
            sum_e[i] = es[i] * now;
            now *= ies[i];
        }
        for ph in 1..=len {
            let p = 1 << (len - ph);
            let mut now = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y * now;
                    *x = l + r;
                    *y = l - r;
                }
                now *= sum_e[(!i).trailing_zeros() as usize];
            }
        }
    }
    fn intt(&mut self) {
        let f = self;
        let n = f.len();
        assert!(n.count_ones() == 1);
        assert!(n <= T::order());
        let len = n.trailing_zeros() as usize;
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_ie = [ModInt::zero(); 30];
        let cnt2 = T::order().trailing_zeros() as usize;
        let mut e = ModInt::new_unchecked(T::zeta());
        let mut ie = e.inv();
        for i in (2..=cnt2).rev() {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e * e;
            ie = ie * ie;
        }
        let mut now = ModInt::one();
        for i in 0..(cnt2 - 1) {
            sum_ie[i] = ies[i] * now;
            now *= es[i];
        }
        for ph in (1..=len).rev() {
            let p = 1 << (len - ph);
            let mut inow = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y;
                    *x = l + r;
                    *y = (l - r) * inow;
                }
                inow *= sum_ie[(!i).trailing_zeros() as usize];
            }
        }
        let ik = ModInt::new_unchecked((T::modulo() + 1) >> 1).pow(len as u64);
        for f in f.iter_mut() {
            *f *= ik;
        }
    }
    fn multiply(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.len().min(rhs.len()) <= 32 {
            return self.mul(rhs);
        }
        let size = (self.len() + rhs.len() - 1).next_power_of_two();
        let mut f = vec![ModInt::zero(); size];
        let mut g = vec![ModInt::zero(); size];
        f[..self.len()].copy_from_slice(self);
        g[..rhs.len()].copy_from_slice(rhs);
        f.ntt();
        g.ntt();
        f.dot_assign(&g);
        f.intt();
        f.truncate(self.len() + rhs.len() - 1);
        f
    }
}

pub trait PolynomialOperation {
    type Item;
    fn eval(&self, x: Self::Item) -> Self::Item;
    fn derivative(&self) -> Vec<Self::Item>;
    fn integral(&self) -> Vec<Self::Item>;
}

impl<T: Modulo> PolynomialOperation for [ModInt<T>] {
    type Item = ModInt<T>;
    fn eval(&self, x: Self::Item) -> Self::Item {
        self.iter().rev().fold(ModInt::zero(), |s, a| s * x + *a)
    }
    fn derivative(&self) -> Vec<Self::Item> {
        if self.len() <= 1 {
            return vec![];
        }
        self[1..]
            .iter()
            .enumerate()
            .map(|(k, a)| ModInt::new_unchecked(k as u32 + 1) * *a)
            .collect()
    }
    fn integral(&self) -> Vec<Self::Item> {
        if self.is_empty() {
            return vec![];
        }
        let mut inv = vec![ModInt::one(); self.len() + 1];
        let mut mul = ModInt::zero();
        for i in 1..=self.len() {
            mul += ModInt::one();
            inv[i] = inv[i - 1] * mul;
        }
        let mut prod = inv[self.len()].inv();
        for i in (1..=self.len()).rev() {
            inv[i] = self[i - 1] * inv[i - 1] * prod;
            prod *= mul;
            mul -= ModInt::one();
        }
        inv[0] = ModInt::zero();
        inv
    }
}

pub trait FPSOperation {
    type Item;
    fn inverse(&self, n: usize) -> Vec<Self::Item>;
    fn log(&self, n: usize) -> Vec<Self::Item>;
    fn exp(&self, n: usize) -> Vec<Self::Item>;
}

impl<T: NTTFriendly> FPSOperation for [ModInt<T>] {
    type Item = ModInt<T>;
    fn inverse(&self, n: usize) -> Vec<Self::Item> {
        assert!(self.len() > 0 && !self[0].is_zero());
        let len = n.next_power_of_two();
        assert!(2 * len <= T::order());
        let mut b = vec![ModInt::zero(); n];
        b[0] = self[0].inv();
        let mut f = Vec::with_capacity(2 * len);
        let mut g = Vec::with_capacity(2 * len);
        let mut size = 1;
        while size < n {
            g.clear();
            g.extend(b.iter().take(size));
            g.resize(2 * size, ModInt::zero());
            f.clear();
            f.extend(self.iter().take(2 * size));
            f.resize(2 * size, ModInt::zero());
            f.ntt();
            g.ntt();
            f.dot_assign(&g);
            f.intt();
            f[..size].iter_mut().for_each(|f| *f = ModInt::zero());
            f.ntt();
            f.dot_assign(&g);
            f.intt();
            for (b, g) in b[size..].iter_mut().zip(&f[size..]) {
                *b = *b - *g;
            }
            size *= 2;
        }
        b
    }
    fn log(&self, n: usize) -> Vec<Self::Item> {
        assert!(self.get(0).map_or(false, |p| p.get() == 1));
        let mut b = self.derivative().multiply(&self.inverse(n));
        b.truncate(n - 1);
        let mut b = b.integral();
        b.resize(n, ModInt::zero());
        b
    }
    fn exp(&self, n: usize) -> Vec<Self::Item> {
        assert!(self.get(0).map_or(true, |a| a.is_zero()));
        assert!(n <= T::order());
        let mut b = vec![ModInt::one()];
        let mut size = 1;
        while size < n {
            size <<= 1;
            let f = b.log(size);
            let g = self[..self.len().min(size)].sub(&f);
            b = b.multiply(&g).add(&b);
            b.truncate(size);
        }
        b.truncate(n);
        b.resize(n, ModInt::zero());
        b
    }
}

// test
//  yuki907: https://yukicoder.me/submissions/712523
//  hhkb2020: https://atcoder.jp/contests/hhkb2020/submissions/26997806
//

0