結果
問題 | No.1746 Sqrt Integer Segments |
ユーザー | 👑 p-adic |
提出日時 | 2023-09-12 09:12:30 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 318 ms / 2,000 ms |
コード長 | 26,061 bytes |
コンパイル時間 | 3,611 ms |
コンパイル使用メモリ | 237,808 KB |
実行使用メモリ | 22,656 KB |
最終ジャッジ日時 | 2024-06-29 21:57:21 |
合計ジャッジ時間 | 9,133 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,528 KB |
testcase_01 | AC | 3 ms
6,656 KB |
testcase_02 | AC | 205 ms
18,144 KB |
testcase_03 | AC | 104 ms
13,352 KB |
testcase_04 | AC | 146 ms
15,280 KB |
testcase_05 | AC | 306 ms
22,272 KB |
testcase_06 | AC | 81 ms
11,904 KB |
testcase_07 | AC | 28 ms
8,576 KB |
testcase_08 | AC | 201 ms
17,920 KB |
testcase_09 | AC | 304 ms
22,444 KB |
testcase_10 | AC | 77 ms
11,520 KB |
testcase_11 | AC | 272 ms
20,992 KB |
testcase_12 | AC | 318 ms
22,656 KB |
testcase_13 | AC | 311 ms
22,632 KB |
testcase_14 | AC | 298 ms
22,512 KB |
testcase_15 | AC | 313 ms
22,436 KB |
testcase_16 | AC | 303 ms
22,504 KB |
testcase_17 | AC | 176 ms
16,580 KB |
testcase_18 | AC | 17 ms
8,108 KB |
testcase_19 | AC | 18 ms
8,036 KB |
testcase_20 | AC | 17 ms
8,064 KB |
testcase_21 | AC | 47 ms
7,344 KB |
testcase_22 | AC | 47 ms
7,296 KB |
testcase_23 | AC | 25 ms
6,912 KB |
testcase_24 | AC | 93 ms
8,164 KB |
testcase_25 | AC | 93 ms
8,192 KB |
testcase_26 | AC | 89 ms
8,132 KB |
testcase_27 | AC | 108 ms
8,172 KB |
testcase_28 | AC | 105 ms
8,300 KB |
testcase_29 | AC | 104 ms
8,064 KB |
ソースコード
#ifdef DEBUG #define _GLIBCXX_DEBUG #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort ) #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE ) #define CERR( MESSAGE ) cerr << MESSAGE << endl; #define COUT( ANSWER ) cout << "出力: " << ANSWER << endl #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " << ( MIN ) << ( ( MIN ) <= A ? "<=" : ">" ) << A << ( A <= ( MAX ) ? "<=" : ">" ) << ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define AUTO_CHECK bool auto_checked = true; AutoCheck( auto_checked ); if( auto_checked ){ return 0; }; #define START_WATCH( PROCESS_NAME ) StartWatch( PROCESS_NAME ) #define STOP_WATCH( HOW_MANY_TIMES ) StopWatch( HOW_MANY_TIMES ) #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE ) #define CERR( MESSAGE ) #define COUT( ANSWER ) cout << ANSWER << "\n" #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define AUTO_CHECK #define START_WATCH( PROCESS_NAME ) #define STOP_WATCH( HOW_MANY_TIMES ) #endif // #define RANDOM_TEST #include <bits/stdc++.h> using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define TYPE_OF( VAR ) decay_t<decltype( VAR )> #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define GETLINE( A ) string A; getline( cin , A ) #define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define QUIT goto END_MAIN #define TEST_CASE_NUM( BOUND ) DEXPR( int , bound_T , BOUND , min( BOUND , 100 ) ); int T = 1; if constexpr( bound_T > 1 ){ SET_ASSERT( T , 1 , bound_T ); } #define START_MAIN REPEAT( T ){ if constexpr( bound_T > 1 ){ CERR( "testcase " << VARIABLE_FOR_REPEAT_T << ":" ); } #define FINISH_MAIN QUIT; } END_MAIN: CERR( "" ); #ifdef DEBUG inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } void AutoCheck( bool& auto_checked ); void StartWatch( const string& process_name = "nothing" ); void StopWatch( const int& how_many_times = 1 ); #endif #if defined( DEBUG ) && defined( RANDOM_TEST ) ll GetRand( const ll& Rand_min , const ll& Rand_max ); #define SET_ASSERT( A , MIN , MAX ) CERR( #A << " = " << ( A = GetRand( MIN , MAX ) ) ) #define RETURN( ANSWER ) if( ( ANSWER ) == guchoku ){ CERR( ( ANSWER ) << " == " << guchoku ); goto END_MAIN; } else { CERR( ( ANSWER ) << " != " << guchoku ); QUIT; } #else #define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX ) #define RETURN( ANSWER ) COUT( ( ANSWER ) ); QUIT #endif // 算術的関数 template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; } template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); } inline ll MIN( const ll& a , const ll& b ){ return min( a , b ); } inline ull MIN( const ull& a , const ull& b ){ return min( a , b ); } inline ll MAX( const ll& a , const ll& b ){ return max( a , b ); } inline ull MAX( const ull& a , const ull& b ){ return max( a , b ); } #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \ static ll ANSWER[CONSTEXPR_LENGTH]; \ static ll ANSWER_INV[CONSTEXPR_LENGTH]; \ static ll INVERSE[CONSTEXPR_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 二分探索テンプレート // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \ ll ANSWER = MINIMUM; \ if( MINIMUM <= MAXIMUM ){ \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ CERR( "二分探索中: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ CERR( "二分探索終了: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << ( EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) << TARGET ); \ CERR( ( EXPRESSION DESIRED_INEQUALITY TARGET ? "二分探索成功" : "二分探索失敗" ) ); \ assert( EXPRESSION DESIRED_INEQUALITY TARGET ); \ } else { \ CERR( "二分探索失敗: " << MINIMUM << ">" << MAXIMUM ); \ assert( MINIMUM <= MAXIMUM ); \ } \ // 単調増加の時にEXPRESSION >= TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調増加の時にEXPRESSION <= TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調減少の時にEXPRESSION >= TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調減少の時にEXPRESSION <= TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。 template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; } // t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。 template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; } // t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。 template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); } // tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。 template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); } // データ構造用関数 template <typename T> inline T add( const T& t0 , const T& t1 ) { return t0 + t1; } template <typename T> inline const T& zero() { static const T z = 0; return z; } template <typename T> inline T add_inv( const T& t ) { return -t; } template <typename T> inline T multiply( const T& t0 , const T& t1 ) { return t0 * t1; } template <typename T> inline const T& one() { static const T o = 1; return o; } template <typename T> inline T id( const T& v ) { return v; } // グリッド問題用関数 int H , W , H_minus , W_minus , HW; inline pair<int,int> EnumHW( const int& v ) { return { v / W , v % W }; } inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; } const string direction[4] = {"U","R","D","L"}; // (i,j)->(k,h)の方向番号を取得 inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);} // v->wの方向番号を取得 inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);} // 方向番号の反転U<->D、R<->L inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;} // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& // 入力の範囲内で要件 // (1) (T,m_T:T^2->T,i_T:T->T)が群である。 // が成り立つ場合のみサポート。(単位元はテンプレート引数に渡さなくてよい) template <typename T , T m_T(const T&,const T&) , T i_T(const T&) , int size_max> class CumulativeProd_Body { protected: int m_size; T m_a[size_max]; T m_a_reverse[size_max]; public: inline CumulativeProd_Body( const int& size ); // 0 <= i,j < m_sizeの場合のみサポート。 // iからへのpathがi=v_0->...->v_k=jの時m_a[v_0]...m_a[v_k]を // Prodや逆順のProdに関して計算する。 inline T PathProd( const int& i , const int& j ); private: virtual int Parent( const int& i ) = 0; virtual int LCA( const int& i , const int& j ) = 0; }; // 通常の配列上の累積積。 // テンプレート引数に単位元e_T:1->Tも渡す。 // 配列による初期化O(size) // 右区間積取得O(1) // 左区間積取得O(1) // 区間積が単位元である区間の数え上げO(size log size) // 区間積が単位元である区間の列挙O(size log size + 区間数) template <typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&) , int size_max> class CumulativeProd : public CumulativeProd_Body<T,m_T,i_T,size_max> { public: inline CumulativeProd( const T ( &a )[size_max] , const int& size ); // 0 <= iかつi-1 <= j < m_sizeの場合のみサポート。 // m_a[i]...m_a[j]をm_Tに関してで計算する。 inline T RightProd( const int& i , const int& j ); // m_a[j]...m_a[i]をm_Tに関して計算する。 inline T LeftProd( const int& i , const int& j ); // 区間積がe_T()と等しい区間の個数を計算する。 ll CountUnitProdRange(); // 区間積がe_T()と等しい区間を列挙する。 list<pair<int,int> > UnitProdRange(); private: inline int Parent( const int& i ); inline int LCA( const int& i , const int& j ); }; template <typename T , T m_T(const T&,const T&) , T i_T(const T&) , int size_max> inline CumulativeProd_Body<T,m_T,i_T,size_max>::CumulativeProd_Body( const int& size ) : m_size( size ) , m_a() , m_a_reverse() { assert( size <= size_max ); } template <typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&) , int size_max> inline CumulativeProd<T,m_T,e_T,i_T,size_max>::CumulativeProd( const T ( &a )[size_max] , const int& size ) : CumulativeProd_Body<T,m_T,i_T,size_max>( size ) { using base = CumulativeProd_Body<T,m_T,i_T,size_max>; T temp , temp_reverse; base::m_a[0] = base::m_a_reverse[0] = temp = temp_reverse = a[0]; for( int i = 1 ; i < size ; i++ ){ base::m_a[i] = temp = m_T( temp , a[i] ); base::m_a_reverse[i] = temp_reverse = m_T( a[i] , temp_reverse ); } } template <typename T , T m_T(const T&,const T&) , T i_T(const T&) , int size_max> inline T CumulativeProd_Body<T,m_T,i_T,size_max>::PathProd( const int& i , const int& j ) { assert( 0 <= i && i < m_size && 0 <= j && j < m_size ); const int k = LCA( i , j ); return m_T( m_T( m_a_reverse[i] , i_T( m_a_reverse[k] ) ) , k == 0 ? m_a[j] : m_T( i_T( m_a[Parent( k ) ] ) , m_a[j] )); } template <typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&) , int size_max> inline T CumulativeProd<T,m_T,e_T,i_T,size_max>::RightProd( const int& i , const int& j ) { assert( i - 1 <= j ); using base = CumulativeProd_Body<T,m_T,i_T,size_max>; return i <= j ? i == 0 ? base::m_a[j] : m_T( i_T( base::m_a[i-1] ) , base::m_a[j] ) : e_T(); } template <typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&) , int size_max> inline T CumulativeProd<T,m_T,e_T,i_T,size_max>::LeftProd( const int& i , const int& j ) { assert( i - 1 <= j ); using base = CumulativeProd_Body<T,m_T,i_T,size_max>; return i <= j ? i == 0 ? base::m_a_reverse[j] : m_T( base::m_a_reverse[j] , i_T( base::m_a_reverse[i - 1] ) ) : e_T(); } template <typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&) , int size_max> ll CumulativeProd<T,m_T,e_T,i_T,size_max>::CountUnitProdRange() { using base = CumulativeProd_Body<T,m_T,i_T,size_max>; map<T,ll> f{}; f[e_T()]++; for( int i = 0 ; i < base::m_size ; i++ ){ f[base::m_a[i]]++; } ll answer = 0; for( auto itr_f = f.begin() , end_f = f.end() ; itr_f != end_f ; itr_f++ ){ const ll& num = itr_f->second; answer += num * ( num - 1 ) / 2; } return answer; } template <typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&) , int size_max> list<pair<int,int> > CumulativeProd<T,m_T,e_T,i_T,size_max>::UnitProdRange() { using base = CumulativeProd_Body<T,m_T,i_T,size_max>; map<T,list<int> > f{}; f[e_T()].push_back( -1 ); for( int i = 0 ; i < base::m_size ; i++ ){ f[base::m_a[i]].push_back( i ); } list<pair<int,int> > answer{}; for( auto itr_f = f.begin() , end_f = f.end() ; itr_f != end_f ; itr_f++ ){ const auto& a = itr_f->second; for( auto itr_a_L = a.begin() , end_a = a.end() ; itr_a_L != end_a ; itr_a_L++ ){ const int i = *itr_a_L + 1; auto itr_a_R = itr_a_R; itr_a_R++; while( itr_a_R != end_a ){ answer.push_back( i , *itr_a_R ); } } } return answer; } template <typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&) , int size_max> inline int CumulativeProd<T,m_T,e_T,i_T,size_max>::Parent( const int& i ) { return i - 1; } template <typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&) , int size_max> inline int CumulativeProd<T,m_T,e_T,i_T,size_max>::LCA( const int& i , const int& j ) { return min( i , j ); } template <typename T> class ZobristHashBody { protected: ull m_hash; public: inline ZobristHashBody( const ull& hash ); ull Encode( const set<T>& S ); inline ull Encode( const list<T>& S , const bool& non_overlapping = false ); template <int length_max> inline ull Encode( const T ( &a )[length_max] , const int& length , const bool& non_overlapping = false ); inline ull SymmetricDifference( const ull& code0 , const ull& code1 ); inline ull Add( set<T>& S , const ull& code , const T& t ); inline ull Erase( set<T>& S , const ull& code , const T& t ); inline ull AddErase( const ull& code , const T& t ); private: ull OverlappingEncode( const list<T>& S ); template <int length_max> ull OverlappingEncode( const T ( &a )[length_max] , const int& length ); ull NonOverlappingEncode( const list<T>& S ); template <int length_max> ull NonOverlappingEncode( const T ( &a )[length_max] , const int& length ); virtual ull Hash( const T& t ) = 0; }; // 集合のコードO(要素数) // リストの像のコードO(要素数 log 要素数)(無重複保証畤はO(要素数)) // 配列の像のコードO(要素数 log 要素数)(無重複保証畤はO(要素数)) // 集合の対称差O(1) // 要素追加O(log要素数) // 要素削除O(log要素数) // 要素がある場合は削除、ない場合は追加O(1) class ZobristHash : public ZobristHashBody<ull> { public: inline ZobristHash( const ull& hash = 14177381365537266759ULL ); private: inline ull Hash( const ull& t ); }; // 集合のコードO(要素数 log_size) // リストの像のコードO(要素数(log 要素数)(log size))(無重複保証畤はO(要素数 log size)) // 配列の像のコードO(要素数(log 要素数)(log size))(無重複保証畤はO(要素数 log size)) // 集合の対称差O(1) // 要素追加O((log要素数)(log size)) // 要素削除O((log要素数)(log size)) // 要素がある場合は削除、ない場合は追加O(log size) template <typename T> class MemorisationZobristHash : public ZobristHashBody<T> { private: map<T,ull> m_f; public: inline MemorisationZobristHash( const ull& hash = 14177381365537266759ULL ); private: inline ull Hash( const T& t ); }; // 集合のコードO(要素数) // リストの像のコードO(要素数 log 要素数)(無重複保証畤はO(要素数)) // 配列の像のコードO(要素数 log 要素数)(無重複保証畤はO(要素数)) // 集合の対称差O(1) // 要素追加O(log要素数) // 要素削除O(log要素数) // 要素がある場合は削除、ない場合は追加O(1) template <typename T , int enum_T_inv(const T&)> class EnumerationZobristHash : public ZobristHashBody<T> { public: inline EnumerationZobristHash( const ull& hash = 14177381365537266759ULL ); private: inline ull Hash( const T& t ); }; template <typename T> inline ZobristHashBody<T>::ZobristHashBody( const ull& hash ) : m_hash( hash ) {} inline ZobristHash::ZobristHash( const ull& hash ) : ZobristHashBody<ull>( hash ) {} template <typename T> inline MemorisationZobristHash<T>::MemorisationZobristHash( const ull& hash ) : ZobristHashBody<T>( hash ) {} template <typename T , int enum_T_inv(const T&)> inline EnumerationZobristHash<T,enum_T_inv>::EnumerationZobristHash( const ull& hash ) : ZobristHashBody<T>( hash ) {} template <typename T> ull ZobristHashBody<T>::Encode( const set<T>& S ) { ull answer = 0; for( auto itr = S.begin() , end = S.end() ; itr != end ; itr++ ){ answer ^= Hash( *itr ); } return answer; } template <typename T> inline ull ZobristHashBody<T>::Encode( const list<T>& S , const bool& non_overlapping ) { return non_overlapping ? NonOverlappingEncode( S ) : OverlappingEncode( S ); } template <typename T> template <int length_max> inline ull ZobristHashBody<T>::Encode( const T ( &a )[length_max] , const int& length , const bool& non_overlapping ) { return non_overlapping ? NonOverlappingEncode( a , length ) : OverlappingEncode( a , length ); } template <typename T> ull ZobristHashBody<T>::OverlappingEncode( const list<T>& S ) { set<T> S_set{}; for( auto itr = S.begin() , end = S.end() ; itr != end ; itr++ ){ S_set.insert( *itr ); } return Encode( S_set ); } template <typename T> template <int length_max> ull ZobristHashBody<T>::OverlappingEncode( const T ( &a )[length_max] , const int& length ) { set<T> S_set{}; for( int i = 0 ; i < length ; i++ ){ S_set.insert( a[i] ); } return Encode( S_set ); } template <typename T> ull ZobristHashBody<T>::NonOverlappingEncode( const list<T>& S ) { ull answer = 0; for( auto itr = S.begin() , end = S.end() ; itr != end ; itr++ ){ answer ^= Hash( *itr ); } return answer; } template <typename T> template <int length_max> ull ZobristHashBody<T>::NonOverlappingEncode( const T ( &a )[length_max] , const int& length ) { ull answer = 0; for( int i = 0 ; i < length ; i++ ){ answer ^= Hash( a[i] ); } return answer; } template <typename T> inline ull ZobristHashBody<T>::SymmetricDifference( const ull& code0 , const ull& code1 ) { return code0 ^ code1; } template <typename T> inline ull ZobristHashBody<T>::Add( set<T>& S , const ull& code , const T& t ) { return S.count( t ) == 0 ? ( S.insert( t ) , code ^ Hash( t ) ) : code; } template <typename T> inline ull ZobristHashBody<T>::Erase( set<T>& S , const ull& code , const T& t ) { return S.count( t ) == 0 ? code : ( S.erase( t ) , code ^ Hash( t ) ); } template <typename T> inline ull ZobristHashBody<T>::AddErase( const ull& code , const T& t ){ return code ^ Hash( t ); } inline ull ZobristHash::Hash( const ull& t ) { return t * ZobristHashBody<ull>::m_hash; } template <typename T> inline ull MemorisationZobristHash<T>::Hash( const T& t ) { if( m_f.count( t ) == 0 ){ const ull size = m_f.size() + 1; return m_f[t] = size * ZobristHashBody<ull>::m_hash; } return m_f[t]; } template <typename T , int enum_T_inv(const T&)> inline ull EnumerationZobristHash<T,enum_T_inv>::Hash( const T& t ) { return enum_T_inv( t ) * ZobristHashBody<T>::m_hash; } TE <TY INT,INT val_limit,int LE_max = val_limit>CL PrimeEnumeration{PU:INT m_val[LE_max];int m_LE;CE PrimeEnumeration();};TE <TY INT,INT val_limit,int LE_max>CE PrimeEnumeration<INT,val_limit,LE_max>::PrimeEnumeration():m_val(),m_LE(0){bool is_comp[val_limit] ={};for(INT i = 2;i < val_limit;i++){if(is_comp[i] == false){INT j = i;WH((j += i) < val_limit){is_comp[j] = true;}m_val[m_LE++] = i;if(m_LE >= LE_max){break;}}}}TE <TY INT,INT val_limit,int LE_max>VO SetPrimeFactorisation(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,CO INT& n,VE<INT>& P,VE<INT>& EX){INT n_copy = n;int i = 0;WH(i < prime.m_LE){CO INT& p = prime.m_val[i];if(p * p > n_copy){break;}if(n_copy % p == 0){P.push_back(p);EX.push_back(1);INT& EX_back = EX.back();n_copy /= p;WH(n_copy % p == 0){EX_back++;n_copy /= p;}}i++;}if(n_copy != 1){P.push_back(n_copy);EX.push_back(1);}RE;} // データ構造使用畤のNの上限 inline DEXPR( int , bound_N , 200000 , 100 ); // 0が5個 inline ull xor_add( const ull& t0 , const ull& t1 ){ return t0 ^ t1; } int main() { UNTIE; AUTO_CHECK; TEST_CASE_NUM( 1 ); START_MAIN; constexpr PrimeEnumeration<int,1000> pe{}; // ZobristHash zh{}; MemorisationZobristHash<ull> zh{}; CIN( int , N ); // ll A[N]; ull code_A[bound_N]; // 関数(コンストラクタ)の引数に使う。 FOR( i , 0 , N ){ CIN( int , Ai ); vector<int> P; vector<int> exponent; SetPrimeFactorisation( pe , Ai , P , exponent ); int size = P.size(); ull& code_Ai = code_A[i] = 0; FOR( i , 0 , size ){ code_Ai = exponent[i] % 2 == 0 ? code_Ai : zh.AddErase( code_Ai , P[i] ); } } CumulativeProd<ull,xor_add,zero,id,bound_N> cp{ code_A , N }; RETURN( cp.CountUnitProdRange() ); FINISH_MAIN; }