結果
問題 | No.8063 幅優先探索 |
ユーザー |
👑 |
提出日時 | 2023-09-17 09:14:16 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 29,648 bytes |
コンパイル時間 | 13,105 ms |
コンパイル使用メモリ | 297,084 KB |
最終ジャッジ日時 | 2025-02-16 23:07:04 |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 5 WA * 2 RE * 2 |
ソースコード
#ifdef DEBUG#define _GLIBCXX_DEBUG#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )#define CERR( MESSAGE ) cerr << MESSAGE << endl;#define COUT( ANSWER ) cout << "出力: " << ANSWER << endl#define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " << ( MIN ) << ( ( MIN ) <= A ? "<=" : ">" ) << A << ( A <= ( MAX ) ? "<=" : ">" ) << (MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )#define AUTO_CHECK bool auto_checked = true; AutoCheck( auto_checked ); if( auto_checked ){ return 0; };#else#pragma GCC optimize ( "O3" )#pragma GCC optimize( "unroll-loops" )#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )#define CERR( MESSAGE )#define COUT( ANSWER ) cout << ANSWER << "\n"#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )#define AUTO_CHECK#endif// #define RANDOM_TEST#include <bits/stdc++.h>using namespace std;using uint = unsigned int;using ll = long long;using ull = unsigned long long;using ld = long double;using lld = __float128;#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )#define TYPE_OF( VAR ) decay_t<decltype( VAR )>#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE#define CIN( LL , A ) LL A; cin >> A#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )#define GETLINE( A ) string A; getline( cin , A )#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )#define QUIT goto END_MAIN#define TEST_CASE_NUM( BOUND ) DEXPR( int , bound_T , BOUND , min( BOUND , 100 ) ); int T = 1; if constexpr( bound_T > 1 ){ SET_ASSERT( T , 1 ,bound_T ); }#define START_MAIN REPEAT( T ){ if constexpr( bound_T > 1 ){ CERR( "testcase " << VARIABLE_FOR_REPEAT_T << ":" ); }#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )#define FINISH_MAIN QUIT; } END_MAIN: CERR( "" );#ifdef DEBUGinline void AlertAbort( int n ) { CERR("abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }void AutoCheck( bool& auto_checked );#endif#if defined( DEBUG ) && defined( RANDOM_TEST )ll GetRand( const ll& Rand_min , const ll& Rand_max );#define SET_ASSERT( A , MIN , MAX ) CERR( #A << " = " << ( A = GetRand( MIN , MAX ) ) )#define RETURN( ANSWER ) if( ( ANSWER ) == guchoku ){ CERR( ( ANSWER ) << " == " << guchoku ); goto END_MAIN; } else { CERR( ( ANSWER ) << " != "<< guchoku ); QUIT; }#else#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )#define RETURN( ANSWER ) COUT( ( ANSWER ) ); QUIT#endif// 算術的関数template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }inline ll MIN( const ll& a , const ll& b ){ return min( a , b ); }inline ull MIN( const ull& a , const ull& b ){ return min( a , b ); }inline ll MAX( const ll& a , const ll& b ){ return max( a , b ); }inline ull MAX( const ull& a , const ull& b ){ return max( a , b ); }#define POWER( ANSWER , ARGUMENT , EXPONENT ) \static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \{ \TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \} \ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ll ANSWER{ 1 }; \{ \ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \} \ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \static ll ANSWER[CONSTEXPR_LENGTH]; \static ll ANSWER_INV[CONSTEXPR_LENGTH]; \static ll INVERSE[CONSTEXPR_LENGTH]; \{ \ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \FOREQ( i , 1 , MAX_INDEX ){ \ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \} \ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \FOREQ( i , 2 , MAX_INDEX ){ \ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (MODULO ) ) ) %= ( MODULO ); \} \} \// 二分探索テンプレート// EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= TARGETの整数解を格納。#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \ll ANSWER = MINIMUM; \if( MINIMUM <= MAXIMUM ){ \ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \CERR( "二分探索中: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" <<TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \} else { \VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \} \ANSWER = UPDATE_ANSWER; \} \CERR( "二分探索終了: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << (EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) << TARGET ); \CERR( ( EXPRESSION DESIRED_INEQUALITY TARGET ? "二分探索成功" : "二分探索失敗" ) ); \assert( EXPRESSION DESIRED_INEQUALITY TARGET ); \} else { \CERR( "二分探索失敗: " << MINIMUM << ">" << MAXIMUM ); \assert( MINIMUM <= MAXIMUM ); \} \// 単調増加の時にEXPRESSION >= TARGETの最小解を格納。#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調増加の時にEXPRESSION <= TARGETの最大解を格納。#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調減少の時にEXPRESSION >= TARGETの最大解を格納。#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調減少の時にEXPRESSION <= TARGETの最小解を格納。#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end;} auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }// t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; }auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }// t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); }// tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); }// データ構造用関数template <typename T> inline T add( const T& t0 , const T& t1 ) { return t0 + t1; }template <typename T> inline T xor_add( const T& t0 , const T& t1 ){ return t0 ^ t1; }template <typename T> inline T multiply( const T& t0 , const T& t1 ) { return t0 * t1; }template <typename T> inline const T& zero() { static const T z = 0; return z; }template <typename T> inline const T& one() { static const T o = 1; return o; }\template <typename T> inline T add_inv( const T& t ) { return -t; }template <typename T> inline T id( const T& v ) { return v; }// グリッド問題用関数int H , W , H_minus , W_minus , HW;inline pair<int,int> EnumHW( const int& v ) { return { v / W , v % W }; }inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; }const string direction[4] = {"U","R","D","L"};// (i,j)->(k,h)の方向番号を取得inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);}// v->wの方向番号を取得inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);}// 方向番号の反転U<->D、R<->Linline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;}// 圧縮用#define TE template#define TY typename#define US using#define ST static#define IN inline#define CL class#define PU public#define OP operator#define CE constexpr#define CO const#define NE noexcept#define RE return#define WH while#define VO void#define VE vector#define LI list#define BE begin#define EN end#define SZ size#define MO move#define TH this#define CRI CO int&#define CRUI CO uint&#define CRL CO ll&// 大きな素数// inline CEXPR( ll , P , 998244353 );// // inline CEXPR( ll , P2 , 1000000007 );// データ構造使用畤のNの上限// inline CEXPR( int , bound_N , 10 );inline DEXPR( int , bound_N , 100000 , 100 ); // 0が5個// inline CEXPR( int , bound_N , 1000000000 ); // 0が9個// inline CEXPR( ll , bound_N , 1000000000000000000 ); // 0が18個// データ構造使用畤のMの上限// inline CEXPR( TYPE_OF( bound_N ) , bound_M , bound_N );// inline CEXPR( int , bound_M , 10 );inline DEXPR( int , bound_M , 100000 , 100 ); // 0が5個// inline CEXPR( int , bound_M , 1000000000 ); // 0が9個// inline CEXPR( ll , bound_M , 1000000000000000000 ); // 0が18個// データ構造や壁配列使用畤のH,Wの上限inline DEXPR( int , bound_H , 1000 , 10 );// inline DEXPR( int , bound_H , 100000 , 10 ); // 0が5個// inline CEXPR( int , bound_H , 1000000000 ); // 0が9個inline CEXPR( int , bound_W , bound_H );static_assert( ll( bound_H ) * bound_W < ll( 1 ) << 31 );inline CEXPR( int , bound_HW , bound_H * bound_W );// CEXPR( int , bound_HW , 100000 ); // 0が5個// CEXPR( int , bound_HW , 1000000 ); // 0が6個inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[bound_HW] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v);}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back(v);}}}}inline void SetEdgeOnGrid( const string& Si , const int& i , list<pair<int,ll> > ( &e )[bound_HW] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}}inline void SetWallOnGrid( const string& Si , const int& i , bool ( &non_wall )[bound_H+1][bound_W+1] , const char& walkable = '.' ){bool(&non_wall_i)[bound_W+1]=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]=='#'),false);}}// using path_type = int;using path_type = pair<int,ll>;// CEXPR( int , bound_E , bound_M ); // bound_Mのデフォルト値は10^5CEXPR( int , bound_E , bound_HW ); // bound_HWのデフォルト値は10^6list<path_type> e[bound_E] = {};list<path_type> E( const int& i ){// list<path_type> answer{};list<path_type> answer = e[i];// 入力によらない処理return answer;}#define DIJKSTRA_BODY( INITIALISE_PREV , SET_PREV ) \static const U& unit = Unit(); \assert( unit != m_found && unit < m_infty ); \U weight[size_max]; \\for( int i = 0 ; i < m_size ; i++ ){ \\weight[i] = m_infty; \\} \\set<pair<U,int> > vertex{}; \const int i_start = e_inv( t_start ); \const int i_final = e_inv( t_final ); \vertex.insert( pair<U,int>( weight[i_start] = unit , i_start ) ); \INITIALISE_PREV; \\if( i_start != i_final ){ \\while( ! vertex.empty() ){ \\auto itr_vertex = vertex.begin(); \const pair<U,int> v = *itr_vertex; \const int& i = v.second; \\if( i == i_final ){ \\break; \\} \\const U& u = v.first; \weight[i] = m_found; \vertex.erase( itr_vertex ); \const list<pair<T,U> > edge_i = E( e( i ) ); \list<pair<U,int> > changed_vertex{}; \\for( auto itr_edge_i = edge_i.begin() , end_edge_i = edge_i.end() ; itr_edge_i != end_edge_i ; itr_edge_i++ ){ \\const int& j = e_inv( itr_edge_i->first ); \U& weight_j = weight[j]; \\if( weight_j != m_found ){ \\const U& edge_ij = itr_edge_i->second; \const U temp = Addition( u , edge_ij ); \assert( edge_ij != m_found && temp != m_found && !( temp < edge_ij ) && temp < m_infty ); \\if( weight_j > temp ){ \\if( weight_j != m_infty ){ \\vertex.erase( pair<U,int>( weight_j , j ) ); \\} \\SET_PREV; \changed_vertex.push_back( pair<U,int>( weight_j = temp , j ) ); \\} \\} \\} \\for( auto itr_changed = changed_vertex.begin() , end_changed = changed_vertex.end() ; itr_changed != end_changed ; itr_changed++ ){ \\vertex.insert( *itr_changed ); \\} \\} \\} \// メモリが不足する場合はEの定義を前計算しないでその都度計算させること。template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>class DijkstraBody{private:int m_size;U m_infty;U m_found;int m_length;map<T,int> m_memory;vector<T> m_memory_inv;public:inline DijkstraBody( const int& size , const U& infty , const U& found );// 経路が存在しない場合の返り値はm_inftyU Solve( const T& t_start , const T& t_final );U Solve( const T& t_start , const T& t_final , list<T>& path );const U& Infty() const;private:virtual const U& Unit() const = 0;virtual U Addition( const U& , const U& ) const = 0;virtual T e( const int& i );virtual int e_inv( const T& t );virtual void Reset();};// 入力の範囲内で要件// (1) Eの値の各成分の第2成分が0以上である。// (2) 2^{31}-1がEの値の各成分の第2成分size_max個以下の和で表せるいかなる数よりも大きい。// (6) Vの各要素u,vに対し、辺u->vが複数存在する場合は重みが最小のものが前にpushされている。// が成り立つ場合にのみサポート。// O((size+|E|)log size)で単一始点最短経路探索。template <list<pair<int,ll> > E(const int&) , int size_max>class Dijkstra :public DijkstraBody<int,ll,E,size_max>{public:inline Dijkstra( const int& size );private:inline const ll& Unit() const;inline ll Addition( const ll& , const ll& ) const;inline int e( const int& i );inline int e_inv( const int& t );inline void Reset();};// 入力の範囲内で要件// (1) Eの値の各成分の第2成分がe_T()以上である。// (2) inftyがEの値の各成分の第2成分size_max個以下の和で表せるいかなる項よりも大きい。// (3) foundがEの値の各成分の第2成分size_max個以下の和で表せず、inftyとも異なる。// (4) (U,m_U:U^2->U,e_U:1->U)がbool operator<(const U&,const U&)に関して順序モノイドである。// (6) Vの各要素u,vに対し、辺u->vが複数存在する場合は重みが最小のものが前にpushされている。// が成り立つ場合にのみサポート。// O((size+|E|)(log size)^2)で単一始点最短経路探索。template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max>class MemorisationDijkstra :public DijkstraBody<T,U,E,size_max>{public:inline MemorisationDijkstra( const int& size , const U& infty = 9223372036854775807 , const U& found = -1 );private:inline const U& Unit() const;inline U Addition( const U& , const U& ) const;};// 入力の範囲内で要件// (1) Eの値の各成分の第2成分がe_T()以上である。// (2) inftyがEの値の各成分の第2成分size_max個以下の和で表せるいかなる項よりも大きい。// (3) foundがEの値の各成分の第2成分size_max個以下の和で表せず、inftyとも異なる。// (4) (U,m_U:U^2->U,e_U:1->U)がbool operator<(const U&,const U&)に関して順序モノイドである。// (5) (enum_T,enum_T_inv)が互いに逆写像である。// (6) Vの各要素u,vに対し、辺u->vが複数存在する場合は重みが最小のものが前にpushされている。// が成り立つ場合にのみサポート。// O((size+|E|)log size)で単一始点最短経路探索。template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)>class EnumerationDijkstra :public DijkstraBody<T,U,E,size_max>{public:inline EnumerationDijkstra( const int& size , const U& infty = 9223372036854775807 , const U& found = -1 );private:inline const U& Unit() const;inline U Addition( const U& , const U& ) const;inline T e( const int& i );inline int e_inv( const T& t );inline void Reset();};template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max> inline DijkstraBody<T,U,E,size_max>::DijkstraBody( const int& size ,const U& infty , const U& found ) : m_size( size ) , m_infty( infty ) , m_found( found ) , m_length() , m_memory() , m_memory_inv() {static_assert( ! is_same<U,int>::value ); }template <list<pair<int,ll> > E(const int&) , int size_max> inline Dijkstra<E,size_max>::Dijkstra( const int& size ) : DijkstraBody<int,ll,E,size_max>( size , 9223372036854775807 , -1 ) {}template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inlineMemorisationDijkstra<T,U,m_U,e_U,E,size_max>::MemorisationDijkstra( const int& size , const U& infty , const U& found ) : DijkstraBody<T,U,E,size_max>( size , infty , found ) {}template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)> inline EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::EnumerationDijkstra( const int& size , const U&infty , const U& found ) : DijkstraBody<T,U,E,size_max>( size , infty , found ) {}template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>U DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , const T& t_final ){DIJKSTRA_BODY( , );Reset();return weight[i_final];}template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>U DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , const T& t_final , list<T>& path ){DIJKSTRA_BODY( T prev[size_max] = {} , prev[j] = i );int i = i_final;while( i != i_start ){path.push_front( e( i ) );i = prev[i];}path.push_front( t_start );Reset();return weight[i_final];}template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max> const U& DijkstraBody<T,U,E,size_max>::Infty() const { returnm_infty; }template <list<pair<int,ll> > E(const int&) , int size_max> inline const ll& Dijkstra<E,size_max>::Unit() const { static const ll unit = 0; returnunit; }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline const U&MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Unit() const { return e_U(); }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)> inline const U& EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Unit() const { return e_U(); }template <list<pair<int,ll> > E(const int&) , int size_max> inline ll Dijkstra<E,size_max>::Addition( const ll& u0 , const ll& u1 ) const { return u0+ u1; }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline UMemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Addition( const U& u0 , const U& u1 ) const { return m_U( u0 , u1 ); }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)> inline U EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Addition( const U& u0 , const U& u1 ) const {return m_U( u0 , u1 ); }template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>T DijkstraBody<T,U,E,size_max>::e( const int& i ){assert( i < m_length );return m_memory_inv[i];}template <list<pair<int,ll> > E(const int&) , int size_max> inline int Dijkstra<E,size_max>::e( const int& i ) { return i; }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)> inline T EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::e( const int& i ) { return enum_T( i ); }template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>int DijkstraBody<T,U,E,size_max>::e_inv( const T& t ){if( m_memory.count( t ) == 0 ){assert( m_length < m_size );m_memory_inv.push_back( t );return m_memory[t] = m_length++;}return m_memory[t];}template <list<pair<int,ll> > E(const int&) , int size_max> inline int Dijkstra<E,size_max>::e_inv( const int& t ) { return t; }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)> inline int EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::e_inv( const T& t ) { return enum_T_inv( t );}template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>void DijkstraBody<T,U,E,size_max>::Reset(){m_length = 0;m_memory.clear();m_memory_inv.clear();return;}template <list<pair<int,ll> > E(const int&) , int size_max> inline void Dijkstra<E,size_max>::Reset() {}template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)> inline void EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Reset() {}int main(){UNTIE;AUTO_CHECK;// START_WATCH;TEST_CASE_NUM( 1 );START_MAIN;// CEXPR( ll , P , 998244353 );// // CEXPR( ll , P2 , 1000000007 );// CIN( ll , N );// CIN( ll , M );// CIN( ll , K );// // CIN_ASSERT( N , 1 , bound_N ); // 基本不要、上限のデフォルト値は10^5// // CIN_ASSERT( M , 1 , bound_M ); // 基本不要、上限のデフォルト値は10^5// CIN( string , S );// CIN( string , T );// ll A[N];// // ll B[N];// ll A[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5// ll B[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5// FOR( i , 0 , N ){// cin >> A[i];// // cin >> B[i];// }// FOR( j , 0 , M ){// CIN_ASSERT( uj , 1 , N );// CIN_ASSERT( vj , 1 , N );// uj--;// vj--;// e[uj].push_back( vj );// e[vj].push_back( uj );// }// tuple<int,int,int> data[M];// FOR( j , 0 , M ){// CIN( int , x );// CIN( int , y );// CIN( int , z );// data[j] = { x , y , z };// }// CIN( int , Q );// // DEXPR( int , bound_Q , 100000 , 100 ); // 基本不要// // CIN_ASSERT( Q , 1 , bound_Q ); // 基本不要// tuple<int,int,int> query[Q];// FOR( q , 0 , Q ){// CIN( int , type );// if( type == 1 ){// CIN( int , x );// CIN( int , y );// // query[q] = { type , x , y };// } else if( type == 2 ){// CIN( int , x );// CIN( int , y );// // query[q] = { type , x , y };// } else {// CIN( int , x );// CIN( int , y );// // query[q] = { type , x , y };// }// }cin >> H >> W;// SET_ASSERT( H , 1 , bound_H ); // 基本不要、上限のデフォルト値は10^3// SET_ASSERT( W , 1 , bound_W ); // 基本不要、上限のデフォルト値は10^3H_minus = H - 1;W_minus = W - 1;HW = H * W;// assert( HW <= bound_HW ); // 基本不要、上限のデフォルト値は10^6CIN( int , sy );CIN( int , sx );CIN( int , gy );CIN( int , gx );string S[H];// bool non_wall[bound_H+1][bound_W+1]={};FOR( i , 0 , H ){cin >> S[i];SetEdgeOnGrid( S[i] , i , e );// SetWallOnGrid( S[i] , i , non_wall );}// {h,w}へデコード: EnumHW( v )// {h,w}をコード: EnumHW_inv( h , w );// (i,j)->(k,h)の方向番号を取得: DirectionNumberOnGrid( i , j , k , h );// v->wの方向番号を取得: DirectionNumberOnGrid( v , w );// 方向番号の反転U<->D、R<->L: ReverseDirectionNumberOnGrid( n );// while( CHECK_WATCH( 2000.0 ) ){// }Dijkstra<E,bound_HW> d{ HW };// // ll guchoku = Guchoku();ll answer = d.Solve( EnumHW_inv( --sy , --sx ) , EnumHW_inv( --gy , --gx ) );// FOR( i , 0 , N ){// answer += A[i];// }// // COUT( ( answer ) );assert( answer != d.Infty() );RETURN( answer );FINISH_MAIN;}