結果

問題 No.8063 幅優先探索
ユーザー 👑 p-adicp-adic
提出日時 2023-09-17 09:14:16
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
RE  
実行時間 -
コード長 29,648 bytes
コンパイル時間 13,105 ms
コンパイル使用メモリ 297,084 KB
最終ジャッジ日時 2025-02-16 23:07:04
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 5 WA * 2 RE * 2
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define CERR( MESSAGE ) cerr << MESSAGE << endl;
#define COUT( ANSWER ) cout << " " << ANSWER << endl
#define ASSERT( A , MIN , MAX ) CERR( "ASSERT " << ( MIN ) << ( ( MIN ) <= A ? "<=" : ">" ) << A << ( A <= ( MAX ) ? "<=" : ">" ) << (
      MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
#define AUTO_CHECK bool auto_checked = true; AutoCheck( auto_checked ); if( auto_checked ){ return 0; };
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define CERR( MESSAGE )
#define COUT( ANSWER ) cout << ANSWER << "\n"
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define AUTO_CHECK
#endif
// #define RANDOM_TEST
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using lld = __float128;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define QUIT goto END_MAIN
#define TEST_CASE_NUM( BOUND ) DEXPR( int , bound_T , BOUND , min( BOUND , 100 ) ); int T = 1; if constexpr( bound_T > 1 ){ SET_ASSERT( T , 1 ,
    bound_T ); }
#define START_MAIN REPEAT( T ){ if constexpr( bound_T > 1 ){ CERR( "testcase " << VARIABLE_FOR_REPEAT_T << ":" ); }
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()
#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )
#define FINISH_MAIN QUIT; } END_MAIN: CERR( "" );
#ifdef DEBUG
inline void AlertAbort( int n ) { CERR(
      "abortassert" ); }
void AutoCheck( bool& auto_checked );
#endif
#if defined( DEBUG ) && defined( RANDOM_TEST )
ll GetRand( const ll& Rand_min , const ll& Rand_max );
#define SET_ASSERT( A , MIN , MAX ) CERR( #A << " = " << ( A = GetRand( MIN , MAX ) ) )
#define RETURN( ANSWER ) if( ( ANSWER ) == guchoku ){ CERR( ( ANSWER ) << " == " << guchoku ); goto END_MAIN; } else { CERR( ( ANSWER ) << " != "
      << guchoku ); QUIT; }
#else
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#define RETURN( ANSWER ) COUT( ( ANSWER ) ); QUIT
#endif
//
template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }
inline ll MIN( const ll& a , const ll& b ){ return min( a , b ); }
inline ull MIN( const ull& a , const ull& b ){ return min( a , b ); }
inline ll MAX( const ll& a , const ll& b ){ return max( a , b ); }
inline ull MAX( const ull& a , const ull& b ){ return max( a , b ); }
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
ll ANSWER{ 1 }; \
{ \
ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \
static ll ANSWER[CONSTEXPR_LENGTH]; \
static ll ANSWER_INV[CONSTEXPR_LENGTH]; \
static ll INVERSE[CONSTEXPR_LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_INDEX ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
} \
ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
FOREQ( i , 2 , MAX_INDEX ){ \
ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (
          MODULO ) ) ) %= ( MODULO ); \
} \
} \
//
// EXPRESSIONANSWER調EXPRESSION >= TARGET
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
if( MINIMUM <= MAXIMUM ){ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
CERR( " " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" <<
          TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \
} \
ANSWER = UPDATE_ANSWER; \
} \
CERR( " " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << (
        EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) << TARGET ); \
CERR( ( EXPRESSION DESIRED_INEQUALITY TARGET ? "" : "" ) ); \
assert( EXPRESSION DESIRED_INEQUALITY TARGET ); \
} else { \
CERR( " " << MINIMUM << ">" << MAXIMUM ); \
assert( MINIMUM <= MAXIMUM ); \
} \
// 調EXPRESSION >= TARGET
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION >= TARGET
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// titeratorend()
template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end;
    } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// titeratorend()
template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; }
    auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// titeratorend()
template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); }
// titeratorend()
template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); }
//
template <typename T> inline T add( const T& t0 , const T& t1 ) { return t0 + t1; }
template <typename T> inline T xor_add( const T& t0 , const T& t1 ){ return t0 ^ t1; }
template <typename T> inline T multiply( const T& t0 , const T& t1 ) { return t0 * t1; }
template <typename T> inline const T& zero() { static const T z = 0; return z; }
template <typename T> inline const T& one() { static const T o = 1; return o; }\
template <typename T> inline T add_inv( const T& t ) { return -t; }
template <typename T> inline T id( const T& v ) { return v; }
//
int H , W , H_minus , W_minus , HW;
inline pair<int,int> EnumHW( const int& v ) { return { v / W , v % W }; }
inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; }
const string direction[4] = {"U","R","D","L"};
// (i,j)->(k,h)
inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);}
// v->w
inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);}
// U<->DR<->L
inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;}
//
#define TE template
#define TY typename
#define US using
#define ST static
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
//
// inline CEXPR( ll , P , 998244353 );
// // inline CEXPR( ll , P2 , 1000000007 );
// 使N
// inline CEXPR( int , bound_N , 10 );
inline DEXPR( int , bound_N , 100000 , 100 ); // 05
// inline CEXPR( int , bound_N , 1000000000 ); // 09
// inline CEXPR( ll , bound_N , 1000000000000000000 ); // 018
// 使M
// inline CEXPR( TYPE_OF( bound_N ) , bound_M , bound_N );
// inline CEXPR( int , bound_M , 10 );
inline DEXPR( int , bound_M , 100000 , 100 ); // 05
// inline CEXPR( int , bound_M , 1000000000 ); // 09
// inline CEXPR( ll , bound_M , 1000000000000000000 ); // 018
// 使H,W
inline DEXPR( int , bound_H , 1000 , 10 );
// inline DEXPR( int , bound_H , 100000 , 10 ); // 05
// inline CEXPR( int , bound_H , 1000000000 ); // 09
inline CEXPR( int , bound_W , bound_H );
static_assert( ll( bound_H ) * bound_W < ll( 1 ) << 31 );
inline CEXPR( int , bound_HW , bound_H * bound_W );
// CEXPR( int , bound_HW , 100000 ); // 05
// CEXPR( int , bound_HW , 1000000 ); // 06
inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[bound_HW] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable
    ){int v = EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)]
    .push_back(v);}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back(v);}}}}
inline void SetEdgeOnGrid( const string& Si , const int& i , list<pair<int,ll> > ( &e )[bound_HW] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]
    ==walkable){int v = EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0
    ){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}}
inline void SetWallOnGrid( const string& Si , const int& i , bool ( &non_wall )[bound_H+1][bound_W+1] , const char& walkable = '.' ){bool(&non_wall_i
    )[bound_W+1]=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]=='#'),false);}}
// using path_type = int;
using path_type = pair<int,ll>;
// CEXPR( int , bound_E , bound_M ); // bound_M10^5
CEXPR( int , bound_E , bound_HW ); // bound_HW10^6
list<path_type> e[bound_E] = {};
list<path_type> E( const int& i )
{
// list<path_type> answer{};
list<path_type> answer = e[i];
//
return answer;
}
#define DIJKSTRA_BODY( INITIALISE_PREV , SET_PREV ) \
static const U& unit = Unit(); \
assert( unit != m_found && unit < m_infty ); \
U weight[size_max]; \
\
for( int i = 0 ; i < m_size ; i++ ){ \
\
weight[i] = m_infty; \
\
} \
\
set<pair<U,int> > vertex{}; \
const int i_start = e_inv( t_start ); \
const int i_final = e_inv( t_final ); \
vertex.insert( pair<U,int>( weight[i_start] = unit , i_start ) ); \
INITIALISE_PREV; \
\
if( i_start != i_final ){ \
\
while( ! vertex.empty() ){ \
\
auto itr_vertex = vertex.begin(); \
const pair<U,int> v = *itr_vertex; \
const int& i = v.second; \
\
if( i == i_final ){ \
\
break; \
\
} \
\
const U& u = v.first; \
weight[i] = m_found; \
vertex.erase( itr_vertex ); \
const list<pair<T,U> > edge_i = E( e( i ) ); \
list<pair<U,int> > changed_vertex{}; \
\
for( auto itr_edge_i = edge_i.begin() , end_edge_i = edge_i.end() ; itr_edge_i != end_edge_i ; itr_edge_i++ ){ \
\
const int& j = e_inv( itr_edge_i->first ); \
U& weight_j = weight[j]; \
\
if( weight_j != m_found ){ \
\
const U& edge_ij = itr_edge_i->second; \
const U temp = Addition( u , edge_ij ); \
assert( edge_ij != m_found && temp != m_found && !( temp < edge_ij ) && temp < m_infty ); \
\
if( weight_j > temp ){ \
\
if( weight_j != m_infty ){ \
\
vertex.erase( pair<U,int>( weight_j , j ) ); \
\
} \
\
SET_PREV; \
changed_vertex.push_back( pair<U,int>( weight_j = temp , j ) ); \
\
} \
\
} \
\
} \
\
for( auto itr_changed = changed_vertex.begin() , end_changed = changed_vertex.end() ; itr_changed != end_changed ; itr_changed++ ){ \
\
vertex.insert( *itr_changed ); \
\
} \
\
} \
\
} \
// E
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
class DijkstraBody
{
private:
int m_size;
U m_infty;
U m_found;
int m_length;
map<T,int> m_memory;
vector<T> m_memory_inv;
public:
inline DijkstraBody( const int& size , const U& infty , const U& found );
// m_infty
U Solve( const T& t_start , const T& t_final );
U Solve( const T& t_start , const T& t_final , list<T>& path );
const U& Infty() const;
private:
virtual const U& Unit() const = 0;
virtual U Addition( const U& , const U& ) const = 0;
virtual T e( const int& i );
virtual int e_inv( const T& t );
virtual void Reset();
};
//
// (1) E20
// (2) 2^{31}-1E2size_max
// (6) Vu,vu->vpush
//
// O((size+|E|)log size)
template <list<pair<int,ll> > E(const int&) , int size_max>
class Dijkstra :
public DijkstraBody<int,ll,E,size_max>
{
public:
inline Dijkstra( const int& size );
private:
inline const ll& Unit() const;
inline ll Addition( const ll& , const ll& ) const;
inline int e( const int& i );
inline int e_inv( const int& t );
inline void Reset();
};
//
// (1) E2e_T()
// (2) inftyE2size_max
// (3) foundE2size_maxinfty
// (4) (U,m_U:U^2->U,e_U:1->U)bool operator<(const U&,const U&)
// (6) Vu,vu->vpush
//
// O((size+|E|)(log size)^2)
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max>
class MemorisationDijkstra :
public DijkstraBody<T,U,E,size_max>
{
public:
inline MemorisationDijkstra( const int& size , const U& infty = 9223372036854775807 , const U& found = -1 );
private:
inline const U& Unit() const;
inline U Addition( const U& , const U& ) const;
};
//
// (1) E2e_T()
// (2) inftyE2size_max
// (3) foundE2size_maxinfty
// (4) (U,m_U:U^2->U,e_U:1->U)bool operator<(const U&,const U&)
// (5) (enum_T,enum_T_inv)
// (6) Vu,vu->vpush
//
// O((size+|E|)log size)
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)>
class EnumerationDijkstra :
public DijkstraBody<T,U,E,size_max>
{
public:
inline EnumerationDijkstra( const int& size , const U& infty = 9223372036854775807 , const U& found = -1 );
private:
inline const U& Unit() const;
inline U Addition( const U& , const U& ) const;
inline T e( const int& i );
inline int e_inv( const T& t );
inline void Reset();
};
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max> inline DijkstraBody<T,U,E,size_max>::DijkstraBody( const int& size ,
    const U& infty , const U& found ) : m_size( size ) , m_infty( infty ) , m_found( found ) , m_length() , m_memory() , m_memory_inv() {
    static_assert( ! is_same<U,int>::value ); }
template <list<pair<int,ll> > E(const int&) , int size_max> inline Dijkstra<E,size_max>::Dijkstra( const int& size ) : DijkstraBody<int,ll,E,size_max
    >( size , 9223372036854775807 , -1 ) {}
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::MemorisationDijkstra( const int& size , const U& infty , const U& found ) : DijkstraBody<T,U,E
    ,size_max>( size , infty , found ) {}
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::EnumerationDijkstra( const int& size , const U&
    infty , const U& found ) : DijkstraBody<T,U,E,size_max>( size , infty , found ) {}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
U DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , const T& t_final )
{
DIJKSTRA_BODY( , );
Reset();
return weight[i_final];
}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
U DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , const T& t_final , list<T>& path )
{
DIJKSTRA_BODY( T prev[size_max] = {} , prev[j] = i );
int i = i_final;
while( i != i_start ){
path.push_front( e( i ) );
i = prev[i];
}
path.push_front( t_start );
Reset();
return weight[i_final];
}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max> const U& DijkstraBody<T,U,E,size_max>::Infty() const { return
    m_infty; }
template <list<pair<int,ll> > E(const int&) , int size_max> inline const ll& Dijkstra<E,size_max>::Unit() const { static const ll unit = 0; return
    unit; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline const U&
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Unit() const { return e_U(); }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline const U& EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Unit() const { return e_U(); }
template <list<pair<int,ll> > E(const int&) , int size_max> inline ll Dijkstra<E,size_max>::Addition( const ll& u0 , const ll& u1 ) const { return u0
    + u1; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline U
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Addition( const U& u0 , const U& u1 ) const { return m_U( u0 , u1 ); }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline U EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Addition( const U& u0 , const U& u1 ) const {
    return m_U( u0 , u1 ); }
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
T DijkstraBody<T,U,E,size_max>::e( const int& i )
{
assert( i < m_length );
return m_memory_inv[i];
}
template <list<pair<int,ll> > E(const int&) , int size_max> inline int Dijkstra<E,size_max>::e( const int& i ) { return i; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline T EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::e( const int& i ) { return enum_T( i ); }
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
int DijkstraBody<T,U,E,size_max>::e_inv( const T& t )
{
if( m_memory.count( t ) == 0 ){
assert( m_length < m_size );
m_memory_inv.push_back( t );
return m_memory[t] = m_length++;
}
return m_memory[t];
}
template <list<pair<int,ll> > E(const int&) , int size_max> inline int Dijkstra<E,size_max>::e_inv( const int& t ) { return t; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline int EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::e_inv( const T& t ) { return enum_T_inv( t );
    }
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
void DijkstraBody<T,U,E,size_max>::Reset()
{
m_length = 0;
m_memory.clear();
m_memory_inv.clear();
return;
}
template <list<pair<int,ll> > E(const int&) , int size_max> inline void Dijkstra<E,size_max>::Reset() {}
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline void EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Reset() {}
int main()
{
UNTIE;
AUTO_CHECK;
// START_WATCH;
TEST_CASE_NUM( 1 );
START_MAIN;
// CEXPR( ll , P , 998244353 );
// // CEXPR( ll , P2 , 1000000007 );
// CIN( ll , N );
// CIN( ll , M );
// CIN( ll , K );
// // CIN_ASSERT( N , 1 , bound_N ); // 10^5
// // CIN_ASSERT( M , 1 , bound_M ); // 10^5
// CIN( string , S );
// CIN( string , T );
// ll A[N];
// // ll B[N];
// ll A[bound_N]; // 使10^5
// ll B[bound_N]; // 使10^5
// FOR( i , 0 , N ){
// cin >> A[i];
// // cin >> B[i];
// }
// FOR( j , 0 , M ){
// CIN_ASSERT( uj , 1 , N );
// CIN_ASSERT( vj , 1 , N );
// uj--;
// vj--;
// e[uj].push_back( vj );
// e[vj].push_back( uj );
// }
// tuple<int,int,int> data[M];
// FOR( j , 0 , M ){
// CIN( int , x );
// CIN( int , y );
// CIN( int , z );
// data[j] = { x , y , z };
// }
// CIN( int , Q );
// // DEXPR( int , bound_Q , 100000 , 100 ); //
// // CIN_ASSERT( Q , 1 , bound_Q ); //
// tuple<int,int,int> query[Q];
// FOR( q , 0 , Q ){
// CIN( int , type );
// if( type == 1 ){
// CIN( int , x );
// CIN( int , y );
// // query[q] = { type , x , y };
// } else if( type == 2 ){
// CIN( int , x );
// CIN( int , y );
// // query[q] = { type , x , y };
// } else {
// CIN( int , x );
// CIN( int , y );
// // query[q] = { type , x , y };
// }
// }
cin >> H >> W;
// SET_ASSERT( H , 1 , bound_H ); // 10^3
// SET_ASSERT( W , 1 , bound_W ); // 10^3
H_minus = H - 1;
W_minus = W - 1;
HW = H * W;
// assert( HW <= bound_HW ); // 10^6
CIN( int , sy );
CIN( int , sx );
CIN( int , gy );
CIN( int , gx );
string S[H];
// bool non_wall[bound_H+1][bound_W+1]={};
FOR( i , 0 , H ){
cin >> S[i];
SetEdgeOnGrid( S[i] , i , e );
// SetWallOnGrid( S[i] , i , non_wall );
}
// {h,w}: EnumHW( v )
// {h,w}: EnumHW_inv( h , w );
// (i,j)->(k,h): DirectionNumberOnGrid( i , j , k , h );
// v->w: DirectionNumberOnGrid( v , w );
// U<->DR<->L: ReverseDirectionNumberOnGrid( n );
// while( CHECK_WATCH( 2000.0 ) ){
// }
Dijkstra<E,bound_HW> d{ HW };
// // ll guchoku = Guchoku();
ll answer = d.Solve( EnumHW_inv( --sy , --sx ) , EnumHW_inv( --gy , --gx ) );
// FOR( i , 0 , N ){
// answer += A[i];
// }
// // COUT( ( answer ) );
assert( answer != d.Infty() );
RETURN( answer );
FINISH_MAIN;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0