結果
問題 | No.2587 Random Walk on Tree |
ユーザー | akakimidori |
提出日時 | 2023-09-17 10:08:31 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 4,219 ms / 10,000 ms |
コード長 | 27,501 bytes |
コンパイル時間 | 14,695 ms |
コンパイル使用メモリ | 403,384 KB |
実行使用メモリ | 56,872 KB |
最終ジャッジ日時 | 2024-09-27 12:47:06 |
合計ジャッジ時間 | 79,709 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,816 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 3 ms
6,940 KB |
testcase_06 | AC | 3 ms
6,944 KB |
testcase_07 | AC | 1 ms
6,940 KB |
testcase_08 | AC | 3 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 6 ms
6,940 KB |
testcase_12 | AC | 29 ms
6,944 KB |
testcase_13 | AC | 50 ms
6,944 KB |
testcase_14 | AC | 12 ms
6,940 KB |
testcase_15 | AC | 2,772 ms
18,012 KB |
testcase_16 | AC | 1,511 ms
12,944 KB |
testcase_17 | AC | 1,617 ms
13,484 KB |
testcase_18 | AC | 260 ms
6,944 KB |
testcase_19 | AC | 3,018 ms
41,808 KB |
testcase_20 | AC | 2,587 ms
18,376 KB |
testcase_21 | AC | 3,249 ms
22,772 KB |
testcase_22 | AC | 3,187 ms
56,872 KB |
testcase_23 | AC | 3,050 ms
37,876 KB |
testcase_24 | AC | 2,821 ms
19,284 KB |
testcase_25 | AC | 1,631 ms
27,540 KB |
testcase_26 | AC | 4,159 ms
22,384 KB |
testcase_27 | AC | 3,337 ms
22,644 KB |
testcase_28 | AC | 3,787 ms
18,548 KB |
testcase_29 | AC | 3,575 ms
18,808 KB |
testcase_30 | AC | 3,126 ms
18,296 KB |
testcase_31 | AC | 3,076 ms
18,160 KB |
testcase_32 | AC | 4,219 ms
19,312 KB |
testcase_33 | AC | 1 ms
6,944 KB |
testcase_34 | AC | 1,490 ms
29,572 KB |
testcase_35 | AC | 1,531 ms
29,448 KB |
testcase_36 | AC | 1,513 ms
29,448 KB |
testcase_37 | AC | 1,553 ms
29,448 KB |
testcase_38 | AC | 3,149 ms
19,932 KB |
testcase_39 | AC | 3,344 ms
20,040 KB |
ソースコード
type Deque<T> = std::collections::VecDeque<T>; fn main() { input! { n: usize, m: usize, s: usize1, t: usize1, e: [(usize1, usize1); n - 1], } let mut g = vec![vec![]; n]; for (a, b) in e { g[a].push(b); g[b].push(a); } let root = s; let mut topo = vec![root]; let mut parent = vec![n; n]; for i in 0..n { let v = topo[i]; for u in g[v].clone() { g[u].retain(|p| *p != v); parent[u] = v; topo.push(u); } } let mut size = vec![1i32; n]; for &v in topo.iter().rev() { g[v].sort_by_key(|u| -size[*u]); size[v] += g[v].iter().map(|u| size[*u]).sum::<i32>(); } let calc = recurse(|rec, mut v: usize| -> Vec<Vec<M>> { let mut poly = vec![]; loop { let mut deq = g[v].iter().skip(1).map(|u| rec(*u)).collect::<Deque<_>>(); while deq.len() > 1 { let a = deq.pop_front().unwrap(); let b = deq.pop_front().unwrap(); let mut c = vec![vec![]; 2]; for (i, a) in a.iter().enumerate() { for (j, b) in b.iter().enumerate() { if (i, j) != (0, 0) { c[i & j].add_assign(&a.multiply(b)); } } } deq.push_back(c); } let mut val = vec![vec![M::zero(), -M::one()], vec![M::one(), -M::one()]]; if let Some(a) = deq.pop_front() { let mut next = vec![vec![]; 2]; next[0].add_assign(&val[0].multiply(&a[1])); next[1].add_assign(&val[1].multiply(&a[1])); next[1].sub_assign(&val[0].multiply(&a[0])); val = next; } poly.push(val); if let Some(u) = g[v].get(0) { v = *u; } else { break; } } let mut a = poly .iter() .map(|a| { let mut b = vec![vec![vec![]; 2]; 2]; b[0][1] = a[0].clone(); b[1][0] = a[0].clone(); b[1][1] = a[1].clone(); b }) .collect::<Vec<_>>(); while a.len() >= 2 { a = a .chunks(2) .map(|a| { if a.len() == 1 { return a[0].clone(); } let l = &a[0]; let r = &a[1]; let mut res = vec![vec![vec![]; 2]; 2]; for (a, l) in l.iter().enumerate() { for (b, l) in l.iter().enumerate() { for (c, r) in r.iter().enumerate() { for (d, r) in r.iter().enumerate() { if b + c == 1 { continue; } let v = l.multiply(r); if (c, b) == (0, 0) { res[a][d].sub_assign(&v); } else { res[a][d].add_assign(&v); } } } } } res }) .collect(); } vec![a[0][0][1].clone(), a[0][1][1].clone()] }); let mut de = calc(root)[1].clone(); let mut deq = Deque::new(); deq.push_back(vec![M::one()]); let mut pos = t; let mut ban = n; let mut geta = 0; loop { deq.extend( g[pos] .iter() .filter(|p| **p != ban) .map(|u| calc(*u)[1].clone()), ); if pos == s { break; } ban = pos; pos = parent[pos]; geta += 1; } while deq.len() > 1 { let a = deq.pop_front().unwrap(); let b = deq.pop_front().unwrap(); deq.push_back(a.multiply(&b)); } let mut nu = deq.pop_front().unwrap(); nu.splice(0..0, (0..geta).map(|_| M::zero())); let mut k = m; while k > 0 { let mut f = de.clone(); for f in f[1..].iter_mut().step_by(2) { *f = -*f; } nu = nu.multiply(&f).into_iter().skip(k & 1).step_by(2).collect(); de = de.multiply(&f).into_iter().step_by(2).collect(); k >>= 1; } println!("{}", nu[0]); } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::<Vec<char>>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::<Vec<u8>>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- // ---------- begin ModInt ---------- mod modint { use std::marker::*; use std::ops::*; pub trait Modulo { fn modulo() -> u32; fn rem() -> u32; fn ini() -> u64; fn reduce(x: u64) -> u32 { debug_assert!(x < (Self::modulo() as u64) << 32); let b = (x as u32 * Self::rem()) as u64; let t = x + b * Self::modulo() as u64; let mut c = (t >> 32) as u32; if c >= Self::modulo() { c -= Self::modulo(); } c as u32 } } #[allow(dead_code)] pub enum Mod1_000_000_007 {} impl Modulo for Mod1_000_000_007 { fn modulo() -> u32 { 1_000_000_007 } fn rem() -> u32 { 2226617417 } fn ini() -> u64 { 582344008 } } #[allow(dead_code)] pub enum Mod998_244_353 {} impl Modulo for Mod998_244_353 { fn modulo() -> u32 { 998_244_353 } fn rem() -> u32 { 998244351 } fn ini() -> u64 { 932051910 } } #[allow(dead_code)] pub fn generate_umekomi_modulo(p: u32) { assert!( p < (1 << 31) && p > 2 && p & 1 == 1 && (2u32..).take_while(|v| v * v <= p).all(|k| p % k != 0) ); let mut t = 1u32; let mut s = !p + 1; let mut n = !0u32 >> 2; while n > 0 { if n & 1 == 1 { t *= s; } s *= s; n >>= 1; } let mut ini = (1u64 << 32) % p as u64; ini = (ini << 32) % p as u64; assert!(t * p == !0); println!("pub enum Mod{} {{}}", p); println!("impl Modulo for Mod{} {{", p); println!(" fn modulo() -> u32 {{"); println!(" {}", p); println!(" }}"); println!(" fn rem() -> u32 {{"); println!(" {}", t); println!(" }}"); println!(" fn ini() -> u64 {{"); println!(" {}", ini); println!(" }}"); println!("}}"); let mut f = vec![]; let mut n = p - 1; for i in 2.. { if i * i > n { break; } if n % i == 0 { f.push(i); while n % i == 0 { n /= i; } } } if n > 1 { f.push(n); } let mut order = 1; let mut n = p - 1; while n % 2 == 0 { n /= 2; order <<= 1; } let z = (2u64..) .find(|z| { f.iter() .all(|f| mod_pow(*z, ((p - 1) / *f) as u64, p as u64) != 1) }) .unwrap(); let zeta = mod_pow(z, ((p - 1) / order) as u64, p as u64); println!("impl transform::NTTFriendly for Mod{} {{", p); println!(" fn order() -> usize {{"); println!(" {}", order); println!(" }}"); println!(" fn zeta() -> u32 {{"); println!(" {}", zeta); println!(" }}"); println!("}}"); } pub struct ModInt<T>(u32, PhantomData<T>); impl<T> Clone for ModInt<T> { fn clone(&self) -> Self { ModInt::build(self.0) } } impl<T> Copy for ModInt<T> {} impl<T: Modulo> Add for ModInt<T> { type Output = ModInt<T>; fn add(self, rhs: Self) -> Self::Output { let mut d = self.0 + rhs.0; if d >= T::modulo() { d -= T::modulo(); } Self::build(d) } } impl<T: Modulo> AddAssign for ModInt<T> { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl<T: Modulo> Sub for ModInt<T> { type Output = ModInt<T>; fn sub(self, rhs: Self) -> Self::Output { let mut d = self.0 - rhs.0; if self.0 < rhs.0 { d += T::modulo(); } Self::build(d) } } impl<T: Modulo> SubAssign for ModInt<T> { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl<T: Modulo> Mul for ModInt<T> { type Output = ModInt<T>; fn mul(self, rhs: Self) -> Self::Output { Self::build(T::reduce(self.0 as u64 * rhs.0 as u64)) } } impl<T: Modulo> MulAssign for ModInt<T> { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl<T: Modulo> Neg for ModInt<T> { type Output = ModInt<T>; fn neg(self) -> Self::Output { if self.0 == 0 { Self::zero() } else { Self::build(T::modulo() - self.0) } } } impl<T: Modulo> std::fmt::Display for ModInt<T> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.get()) } } impl<T: Modulo> std::fmt::Debug for ModInt<T> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.get()) } } impl<T: Modulo> std::str::FromStr for ModInt<T> { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result<Self, Self::Err> { let val = s.parse::<u32>()?; Ok(ModInt::new(val)) } } impl<T: Modulo> From<usize> for ModInt<T> { fn from(val: usize) -> ModInt<T> { ModInt::new_unchecked((val % T::modulo() as usize) as u32) } } impl<T: Modulo> From<u64> for ModInt<T> { fn from(val: u64) -> ModInt<T> { ModInt::new_unchecked((val % T::modulo() as u64) as u32) } } impl<T: Modulo> From<i64> for ModInt<T> { fn from(val: i64) -> ModInt<T> { let m = T::modulo() as i64; ModInt::new((val % m + m) as u32) } } #[allow(dead_code)] impl<T> ModInt<T> { fn build(d: u32) -> Self { ModInt(d, PhantomData) } pub fn zero() -> Self { Self::build(0) } pub fn is_zero(&self) -> bool { self.0 == 0 } } #[allow(dead_code)] impl<T: Modulo> ModInt<T> { pub fn new_unchecked(d: u32) -> Self { Self::build(T::reduce(d as u64 * T::ini())) } pub fn new(d: u32) -> Self { Self::new_unchecked(d % T::modulo()) } pub fn one() -> Self { Self::new_unchecked(1) } pub fn get(&self) -> u32 { T::reduce(self.0 as u64) } pub fn pow(&self, mut n: u64) -> Self { let mut t = Self::one(); let mut s = *self; while n > 0 { if n & 1 == 1 { t *= s; } s *= s; n >>= 1; } t } pub fn inv(&self) -> Self { assert!(!self.is_zero()); self.pow((T::modulo() - 2) as u64) } } pub fn mod_pow(mut r: u64, mut n: u64, m: u64) -> u64 { let mut t = 1 % m; while n > 0 { if n & 1 == 1 { t = t * r % m; } r = r * r % m; n >>= 1; } t } } // ---------- end ModInt ---------- // ---------- begin Precalc ---------- mod precalc { use super::modint::*; #[allow(dead_code)] pub struct Precalc<T> { inv: Vec<ModInt<T>>, fact: Vec<ModInt<T>>, ifact: Vec<ModInt<T>>, } #[allow(dead_code)] impl<T: Modulo> Precalc<T> { pub fn new(n: usize) -> Precalc<T> { let mut inv = vec![ModInt::one(); n + 1]; let mut fact = vec![ModInt::one(); n + 1]; let mut ifact = vec![ModInt::one(); n + 1]; for i in 2..(n + 1) { fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32); } ifact[n] = fact[n].inv(); if n > 0 { inv[n] = ifact[n] * fact[n - 1]; } for i in (1..n).rev() { ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32); inv[i] = ifact[i] * fact[i - 1]; } Precalc { inv: inv, fact: fact, ifact: ifact, } } pub fn inv(&self, n: usize) -> ModInt<T> { assert!(n > 0); self.inv[n] } pub fn fact(&self, n: usize) -> ModInt<T> { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt<T> { self.ifact[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt<T> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn comb(&self, n: usize, k: usize) -> ModInt<T> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } } // ---------- end Precalc ---------- use modint::*; pub trait NTTFriendly: modint::Modulo { fn order() -> usize; fn zeta() -> u32; } type M = ModInt<Mod998_244_353>; impl NTTFriendly for Mod998_244_353 { fn order() -> usize { 8388608 } fn zeta() -> u32 { 15311432 } } // 列に対する命令をテキトーに詰めあわせ // modint, primitive type の2つあたりで使うことを想定 // +, -, * // zero を要求してないのに仮定してる場所がある // // 何も考えずに書き始めたらいろいろよくわからないことになった // 整理 // 長さが等しいときの加算、減算、dot積はok // 長さが異なるときはどうする? // 0埋めされてるというイメージなので // 加算、減算は素直だがdot積はイマイチ // dot積だけ長さが等しいとしておく? // あるいは0埋めのイメージを消すか use std::ops::*; pub trait Zero: Sized + Add<Output = Self> { fn zero() -> Self; } pub fn zero<T: Zero>() -> T { T::zero() } impl<T: Modulo> Zero for ModInt<T> { fn zero() -> Self { Self::zero() } } impl Zero for usize { fn zero() -> Self { 0 } } pub trait ArrayAdd { type Item; fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>; } impl<T> ArrayAdd for [T] where T: Zero + Copy, { type Item = T; fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> { let mut c = vec![T::zero(); self.len().max(rhs.len())]; c[..self.len()].copy_from_slice(self); c.add_assign(rhs); c } } pub trait ArrayAddAssign { type Item; fn add_assign(&mut self, rhs: &[Self::Item]); } impl<T> ArrayAddAssign for [T] where T: Add<Output = T> + Copy, { type Item = T; fn add_assign(&mut self, rhs: &[Self::Item]) { assert!(self.len() >= rhs.len()); self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a); } } impl<T> ArrayAddAssign for Vec<T> where T: Zero + Add<Output = T> + Copy, { type Item = T; fn add_assign(&mut self, rhs: &[Self::Item]) { if self.len() < rhs.len() { self.resize(rhs.len(), T::zero()); } self.as_mut_slice().add_assign(rhs); } } pub trait ArraySub { type Item; fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>; } impl<T> ArraySub for [T] where T: Zero + Sub<Output = T> + Copy, { type Item = T; fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> { let mut c = vec![T::zero(); self.len().max(rhs.len())]; c[..self.len()].copy_from_slice(self); c.sub_assign(rhs); c } } pub trait ArraySubAssign { type Item; fn sub_assign(&mut self, rhs: &[Self::Item]); } impl<T> ArraySubAssign for [T] where T: Sub<Output = T> + Copy, { type Item = T; fn sub_assign(&mut self, rhs: &[Self::Item]) { assert!(self.len() >= rhs.len()); self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a); } } impl<T> ArraySubAssign for Vec<T> where T: Zero + Sub<Output = T> + Copy, { type Item = T; fn sub_assign(&mut self, rhs: &[Self::Item]) { if self.len() < rhs.len() { self.resize(rhs.len(), T::zero()); } self.as_mut_slice().sub_assign(rhs); } } pub trait ArrayDot { type Item; fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>; } impl<T> ArrayDot for [T] where T: Mul<Output = T> + Copy, { type Item = T; fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> { assert!(self.len() == rhs.len()); self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect() } } pub trait ArrayDotAssign { type Item; fn dot_assign(&mut self, rhs: &[Self::Item]); } impl<T> ArrayDotAssign for [T] where T: MulAssign + Copy, { type Item = T; fn dot_assign(&mut self, rhs: &[Self::Item]) { assert!(self.len() == rhs.len()); self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a); } } pub trait ArrayMul { type Item; fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>; } impl<T> ArrayMul for [T] where T: Zero + Mul<Output = T> + Copy, { type Item = T; fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> { if self.is_empty() || rhs.is_empty() { return vec![]; } let mut res = vec![zero(); self.len() + rhs.len() - 1]; for (i, a) in self.iter().enumerate() { for (c, b) in res[i..].iter_mut().zip(rhs) { *c = *c + *a * *b; } } res } } pub trait ArrayNTT { type Item; fn ntt(&mut self); fn intt(&mut self); fn multiply(&self, rhs: &[Self::Item]) -> Vec<Self::Item>; } impl<T> ArrayNTT for [ModInt<T>] where T: NTTFriendly, { type Item = ModInt<T>; fn ntt(&mut self) { let f = self; let n = f.len(); assert!(n.count_ones() == 1); assert!(n <= T::order()); let len = n.trailing_zeros() as usize; let mut es = [ModInt::zero(); 30]; let mut ies = [ModInt::zero(); 30]; let mut sum_e = [ModInt::zero(); 30]; let cnt2 = T::order().trailing_zeros() as usize; let mut e = ModInt::new_unchecked(T::zeta()); let mut ie = e.inv(); for i in (2..=cnt2).rev() { es[i - 2] = e; ies[i - 2] = ie; e = e * e; ie = ie * ie; } let mut now = ModInt::one(); for i in 0..(cnt2 - 1) { sum_e[i] = es[i] * now; now *= ies[i]; } for ph in 1..=len { let p = 1 << (len - ph); let mut now = ModInt::one(); for (i, f) in f.chunks_exact_mut(2 * p).enumerate() { let (x, y) = f.split_at_mut(p); for (x, y) in x.iter_mut().zip(y.iter_mut()) { let l = *x; let r = *y * now; *x = l + r; *y = l - r; } now *= sum_e[(!i).trailing_zeros() as usize]; } } } fn intt(&mut self) { let f = self; let n = f.len(); assert!(n.count_ones() == 1); assert!(n <= T::order()); let len = n.trailing_zeros() as usize; let mut es = [ModInt::zero(); 30]; let mut ies = [ModInt::zero(); 30]; let mut sum_ie = [ModInt::zero(); 30]; let cnt2 = T::order().trailing_zeros() as usize; let mut e = ModInt::new_unchecked(T::zeta()); let mut ie = e.inv(); for i in (2..=cnt2).rev() { es[i - 2] = e; ies[i - 2] = ie; e = e * e; ie = ie * ie; } let mut now = ModInt::one(); for i in 0..(cnt2 - 1) { sum_ie[i] = ies[i] * now; now *= es[i]; } for ph in (1..=len).rev() { let p = 1 << (len - ph); let mut inow = ModInt::one(); for (i, f) in f.chunks_exact_mut(2 * p).enumerate() { let (x, y) = f.split_at_mut(p); for (x, y) in x.iter_mut().zip(y.iter_mut()) { let l = *x; let r = *y; *x = l + r; *y = (l - r) * inow; } inow *= sum_ie[(!i).trailing_zeros() as usize]; } } let ik = ModInt::new_unchecked((T::modulo() + 1) >> 1).pow(len as u64); for f in f.iter_mut() { *f *= ik; } } fn multiply(&self, rhs: &[Self::Item]) -> Vec<Self::Item> { if self.len().min(rhs.len()) <= 32 { return self.mul(rhs); } let size = (self.len() + rhs.len() - 1).next_power_of_two(); let mut f = vec![ModInt::zero(); size]; let mut g = vec![ModInt::zero(); size]; f[..self.len()].copy_from_slice(self); g[..rhs.len()].copy_from_slice(rhs); f.ntt(); g.ntt(); f.dot_assign(&g); f.intt(); f.truncate(self.len() + rhs.len() - 1); f } } pub trait PolynomialOperation { type Item; fn eval(&self, x: Self::Item) -> Self::Item; fn derivative(&self) -> Vec<Self::Item>; fn integral(&self) -> Vec<Self::Item>; } impl<T: Modulo> PolynomialOperation for [ModInt<T>] { type Item = ModInt<T>; fn eval(&self, x: Self::Item) -> Self::Item { self.iter().rev().fold(ModInt::zero(), |s, a| s * x + *a) } fn derivative(&self) -> Vec<Self::Item> { if self.len() <= 1 { return vec![]; } self[1..] .iter() .enumerate() .map(|(k, a)| ModInt::new_unchecked(k as u32 + 1) * *a) .collect() } fn integral(&self) -> Vec<Self::Item> { if self.is_empty() { return vec![]; } let mut inv = vec![ModInt::one(); self.len() + 1]; let mut mul = ModInt::zero(); for i in 1..=self.len() { mul += ModInt::one(); inv[i] = inv[i - 1] * mul; } let mut prod = inv[self.len()].inv(); for i in (1..=self.len()).rev() { inv[i] = self[i - 1] * inv[i - 1] * prod; prod *= mul; mul -= ModInt::one(); } inv[0] = ModInt::zero(); inv } } pub trait FPSOperation { type Item; fn inverse(&self, n: usize) -> Vec<Self::Item>; fn log(&self, n: usize) -> Vec<Self::Item>; fn exp(&self, n: usize) -> Vec<Self::Item>; } impl<T: NTTFriendly> FPSOperation for [ModInt<T>] { type Item = ModInt<T>; fn inverse(&self, n: usize) -> Vec<Self::Item> { assert!(self.len() > 0 && !self[0].is_zero()); let len = n.next_power_of_two(); assert!(2 * len <= T::order()); let mut b = vec![ModInt::zero(); n]; b[0] = self[0].inv(); let mut f = Vec::with_capacity(2 * len); let mut g = Vec::with_capacity(2 * len); let mut size = 1; while size < n { g.clear(); g.extend(b.iter().take(size)); g.resize(2 * size, ModInt::zero()); f.clear(); f.extend(self.iter().take(2 * size)); f.resize(2 * size, ModInt::zero()); f.ntt(); g.ntt(); f.dot_assign(&g); f.intt(); f[..size].iter_mut().for_each(|f| *f = ModInt::zero()); f.ntt(); f.dot_assign(&g); f.intt(); for (b, g) in b[size..].iter_mut().zip(&f[size..]) { *b = *b - *g; } size *= 2; } b } fn log(&self, n: usize) -> Vec<Self::Item> { assert!(self.get(0).map_or(false, |p| p.get() == 1)); let mut b = self.derivative().multiply(&self.inverse(n)); b.truncate(n - 1); let mut b = b.integral(); b.resize(n, ModInt::zero()); b } fn exp(&self, n: usize) -> Vec<Self::Item> { assert!(self.get(0).map_or(true, |a| a.is_zero())); assert!(n <= T::order()); let mut b = vec![ModInt::one()]; let mut size = 1; while size < n { size <<= 1; let f = b.log(size); let g = self[..self.len().min(size)].sub(&f); b = b.multiply(&g).add(&b); b.truncate(size); } b.truncate(n); b.resize(n, ModInt::zero()); b } } // test // yuki907: https://yukicoder.me/submissions/712523 // hhkb2020: https://atcoder.jp/contests/hhkb2020/submissions/26997806 // // ---------- begin recurse ---------- // reference // https://twitter.com/noshi91/status/1393952665566994434 // https://twitter.com/shino16_cp/status/1393933468082397190 pub fn recurse<A, R, F>(f: F) -> impl Fn(A) -> R where F: Fn(&dyn Fn(A) -> R, A) -> R, { fn call<A, R, F>(f: &F, a: A) -> R where F: Fn(&dyn Fn(A) -> R, A) -> R, { f(&|a| call(f, a), a) } move |a| call(&f, a) } // ---------- end recurse ----------