結果
問題 | No.1300 Sum of Inversions |
ユーザー | kuhaku |
提出日時 | 2023-09-17 12:59:42 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 110 ms / 2,000 ms |
コード長 | 26,922 bytes |
コンパイル時間 | 3,897 ms |
コンパイル使用メモリ | 233,324 KB |
実行使用メモリ | 14,208 KB |
最終ジャッジ日時 | 2024-07-04 08:38:59 |
合計ジャッジ時間 | 8,816 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 82 ms
11,520 KB |
testcase_04 | AC | 79 ms
11,264 KB |
testcase_05 | AC | 62 ms
9,984 KB |
testcase_06 | AC | 91 ms
12,672 KB |
testcase_07 | AC | 89 ms
12,160 KB |
testcase_08 | AC | 100 ms
13,056 KB |
testcase_09 | AC | 97 ms
13,184 KB |
testcase_10 | AC | 52 ms
8,832 KB |
testcase_11 | AC | 53 ms
8,960 KB |
testcase_12 | AC | 80 ms
11,520 KB |
testcase_13 | AC | 79 ms
11,136 KB |
testcase_14 | AC | 110 ms
13,952 KB |
testcase_15 | AC | 98 ms
13,056 KB |
testcase_16 | AC | 84 ms
11,776 KB |
testcase_17 | AC | 51 ms
8,576 KB |
testcase_18 | AC | 60 ms
9,344 KB |
testcase_19 | AC | 70 ms
10,496 KB |
testcase_20 | AC | 72 ms
10,752 KB |
testcase_21 | AC | 72 ms
10,752 KB |
testcase_22 | AC | 63 ms
9,984 KB |
testcase_23 | AC | 93 ms
12,544 KB |
testcase_24 | AC | 66 ms
10,112 KB |
testcase_25 | AC | 60 ms
9,344 KB |
testcase_26 | AC | 55 ms
9,088 KB |
testcase_27 | AC | 61 ms
9,728 KB |
testcase_28 | AC | 102 ms
13,312 KB |
testcase_29 | AC | 69 ms
10,624 KB |
testcase_30 | AC | 97 ms
13,056 KB |
testcase_31 | AC | 63 ms
10,112 KB |
testcase_32 | AC | 66 ms
10,240 KB |
testcase_33 | AC | 64 ms
14,208 KB |
testcase_34 | AC | 76 ms
14,080 KB |
testcase_35 | AC | 66 ms
14,080 KB |
testcase_36 | AC | 72 ms
14,080 KB |
ソースコード
#line 1 "a.cpp" #define PROBLEM "" #line 2 "/home/kuhaku/atcoder/github/algo/lib/template/template.hpp" #pragma GCC target("sse4.2,avx2,bmi2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> template <class T, class U> bool chmax(T &a, const U &b) { return a < (T)b ? a = (T)b, true : false; } template <class T, class U> bool chmin(T &a, const U &b) { return (T)b < a ? a = (T)b, true : false; } constexpr std::int64_t INF = 1000000000000000003; constexpr int Inf = 1000000003; constexpr int MOD = 1000000007; constexpr int MOD_N = 998244353; constexpr double EPS = 1e-7; constexpr double PI = M_PI; #line 2 "/home/kuhaku/atcoder/github/algo/lib/binary_tree/fenwick_tree.hpp" /** * @brief フェニック木 * @see http://hos.ac/slides/20140319_bit.pdf * * @tparam T */ template <class T> struct fenwick_tree { fenwick_tree() : _size(), data() {} fenwick_tree(int n) : _size(n + 1), data(n + 1) {} fenwick_tree(const std::vector<T> &v) : _size((int)v.size() + 1), data((int)v.size() + 1) { this->build(v); } template <class U> fenwick_tree(const std::vector<U> &v) : _size((int)v.size() + 1), data((int)v.size() + 1) { this->build(v); } T operator[](int i) const { return this->sum(i + 1) - this->sum(i); } T at(int k) const { return this->operator[](k); } T get(int k) const { return this->operator[](k); } template <class U> void build(const std::vector<U> &v) { for (int i = 0, n = v.size(); i < n; ++i) this->add(i, v[i]); } /** * @brief v[k] = val * * @param k index of array * @param val new value * @return void */ void update(int k, T val) { this->add(k, val - this->at(k)); } /** * @brief v[k] += val * * @param k index of array * @param val new value * @return void */ void add(int k, T val) { assert(0 <= k && k < this->_size); for (++k; k < this->_size; k += k & -k) this->data[k] += val; } /** * @brief chmax(v[k], val) * * @param k index of array * @param val new value * @return bool */ bool chmax(int k, T val) { if (this->at(k) >= val) return false; this->update(k, val); return true; } /** * @brief chmin(v[k], val) * * @param k index of value * @param val new value * @return bool */ bool chmin(int k, T val) { if (this->at(k) <= val) return false; this->update(k, val); return true; } /** * @brief v[0] + ... + v[n - 1] * * @return T */ T all_sum() const { return this->sum(this->_size); } /** * @brief v[0] + ... + v[k - 1] * * @param k index of array * @return T */ T sum(int k) const { assert(0 <= k && k <= this->_size); T res = 0; for (; k > 0; k -= k & -k) res += this->data[k]; return res; } /** * @brief v[a] + ... + v[b - 1] * * @param a first index of array * @param b last index of array * @return T */ T sum(int a, int b) const { return a < b ? this->sum(b) - this->sum(a) : 0; } /** * @brief binary search on fenwick_tree * * @param val target value * @return int */ int lower_bound(T val) const { if (val <= 0) return 0; int k = 1; while (k < this->_size) k <<= 1; int res = 0; for (; k > 0; k >>= 1) { if (res + k < this->_size && this->data[res + k] < val) val -= this->data[res += k]; } return res; } private: int _size; std::vector<T> data; }; #line 3 "/home/kuhaku/atcoder/github/algo/lib/internal/internal_math.hpp" namespace internal { // @param m `1 <= m` // @return x mod m constexpr std::int64_t safe_mod(std::int64_t x, std::int64_t m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; std::uint64_t im; // @param m `1 <= m` explicit barrett(unsigned int m) : _m(m), im((std::uint64_t)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { std::uint64_t z = a; z *= b; std::uint64_t x = (std::uint64_t)(((__uint128_t)(z)*im) >> 64); std::uint64_t y = x * _m; return (unsigned int)(z - y + (z < y ? _m : 0)); } }; struct montgomery { std::uint64_t _m; std::uint64_t im; std::uint64_t r2; // @param m `1 <= m` explicit constexpr montgomery(std::uint64_t m) : _m(m), im(m), r2(-__uint128_t(m) % m) { for (int i = 0; i < 5; ++i) im = im * (2 - _m * im); im = -im; } // @return m constexpr std::uint64_t umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` constexpr std::uint64_t mul(std::uint64_t a, std::uint64_t b) const { return mr(mr(a, b), r2); } constexpr std::uint64_t exp(std::uint64_t a, std::uint64_t b) const { std::uint64_t res = 1, p = mr(a, r2); while (b) { if (b & 1) res = mr(res, p); p = mr(p, p); b >>= 1; } return res; } constexpr bool same_pow(std::uint64_t x, int s, std::uint64_t n) const { x = mr(x, r2), n = mr(n, r2); for (int r = 0; r < s; r++) { if (x == n) return true; x = mr(x, x); } return false; } private: constexpr std::uint64_t mr(std::uint64_t x) const { return ((__uint128_t)(x * im) * _m + x) >> 64; } constexpr std::uint64_t mr(std::uint64_t a, std::uint64_t b) const { __uint128_t t = (__uint128_t)a * b; std::uint64_t inc = std::uint64_t(t) != 0; std::uint64_t x = t >> 64, y = ((__uint128_t)(a * b * im) * _m) >> 64; unsigned long long z = 0; bool f = __builtin_uaddll_overflow(x, y, &z); z += inc; return f ? z - _m : z; } }; constexpr bool is_SPRP32(std::uint32_t n, std::uint32_t a) { std::uint32_t d = n - 1, s = 0; while ((d & 1) == 0) ++s, d >>= 1; std::uint64_t cur = 1, pw = d; while (pw) { if (pw & 1) cur = (cur * a) % n; a = (std::uint64_t)a * a % n; pw >>= 1; } if (cur == 1) return true; for (std::uint32_t r = 0; r < s; r++) { if (cur == n - 1) return true; cur = cur * cur % n; } return false; } // given 2 <= n,a < 2^64, a prime, check whether n is a-SPRP constexpr bool is_SPRP64(const montgomery &m, std::uint64_t a) { auto n = m.umod(); if (n == a) return true; if (n % a == 0) return false; std::uint64_t d = n - 1; int s = 0; while ((d & 1) == 0) ++s, d >>= 1; std::uint64_t cur = m.exp(a, d); if (cur == 1) return true; return m.same_pow(cur, s, n - 1); } constexpr bool is_prime_constexpr(std::uint64_t x) { if (x == 2 || x == 3 || x == 5 || x == 7) return true; if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false; if (x < 121) return (x > 1); montgomery m(x); constexpr std::uint64_t bases[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; for (auto a : bases) { if (!is_SPRP64(m, a)) return false; } return true; } constexpr bool is_prime_constexpr(std::int64_t x) { if (x < 0) return false; return is_prime_constexpr(std::uint64_t(x)); } constexpr bool is_prime_constexpr(std::uint32_t x) { if (x == 2 || x == 3 || x == 5 || x == 7) return true; if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false; if (x < 121) return (x > 1); std::uint64_t h = x; h = ((h >> 16) ^ h) * 0x45d9f3b; h = ((h >> 16) ^ h) * 0x45d9f3b; h = ((h >> 16) ^ h) & 255; constexpr uint16_t bases[] = { 15591, 2018, 166, 7429, 8064, 16045, 10503, 4399, 1949, 1295, 2776, 3620, 560, 3128, 5212, 2657, 2300, 2021, 4652, 1471, 9336, 4018, 2398, 20462, 10277, 8028, 2213, 6219, 620, 3763, 4852, 5012, 3185, 1333, 6227, 5298, 1074, 2391, 5113, 7061, 803, 1269, 3875, 422, 751, 580, 4729, 10239, 746, 2951, 556, 2206, 3778, 481, 1522, 3476, 481, 2487, 3266, 5633, 488, 3373, 6441, 3344, 17, 15105, 1490, 4154, 2036, 1882, 1813, 467, 3307, 14042, 6371, 658, 1005, 903, 737, 1887, 7447, 1888, 2848, 1784, 7559, 3400, 951, 13969, 4304, 177, 41, 19875, 3110, 13221, 8726, 571, 7043, 6943, 1199, 352, 6435, 165, 1169, 3315, 978, 233, 3003, 2562, 2994, 10587, 10030, 2377, 1902, 5354, 4447, 1555, 263, 27027, 2283, 305, 669, 1912, 601, 6186, 429, 1930, 14873, 1784, 1661, 524, 3577, 236, 2360, 6146, 2850, 55637, 1753, 4178, 8466, 222, 2579, 2743, 2031, 2226, 2276, 374, 2132, 813, 23788, 1610, 4422, 5159, 1725, 3597, 3366, 14336, 579, 165, 1375, 10018, 12616, 9816, 1371, 536, 1867, 10864, 857, 2206, 5788, 434, 8085, 17618, 727, 3639, 1595, 4944, 2129, 2029, 8195, 8344, 6232, 9183, 8126, 1870, 3296, 7455, 8947, 25017, 541, 19115, 368, 566, 5674, 411, 522, 1027, 8215, 2050, 6544, 10049, 614, 774, 2333, 3007, 35201, 4706, 1152, 1785, 1028, 1540, 3743, 493, 4474, 2521, 26845, 8354, 864, 18915, 5465, 2447, 42, 4511, 1660, 166, 1249, 6259, 2553, 304, 272, 7286, 73, 6554, 899, 2816, 5197, 13330, 7054, 2818, 3199, 811, 922, 350, 7514, 4452, 3449, 2663, 4708, 418, 1621, 1171, 3471, 88, 11345, 412, 1559, 194}; return is_SPRP32(x, bases[h]); } // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr std::int64_t pow_mod_constexpr(std::int64_t x, std::int64_t n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); std::uint64_t r = 1; std::uint64_t y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; std::int64_t d = n - 1; while (d % 2 == 0) d /= 2; constexpr std::int64_t bases[3] = {2, 7, 61}; for (std::int64_t a : bases) { std::int64_t t = d; std::int64_t y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<std::int64_t, std::int64_t> inv_gcd(std::int64_t a, std::int64_t b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; std::int64_t s = b, t = a; std::int64_t m0 = 0, m1 = 1; while (t) { std::int64_t u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (std::int64_t)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) std::uint64_t floor_sum_unsigned(std::uint64_t n, std::uint64_t m, std::uint64_t a, std::uint64_t b) { std::uint64_t ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } std::uint64_t y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (std::uint64_t)(y_max / m); b = (std::uint64_t)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal #line 3 "/home/kuhaku/atcoder/github/algo/lib/internal/internal_type_traits.hpp" namespace internal { template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal #line 5 "/home/kuhaku/atcoder/github/algo/lib/math/modint.hpp" namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)> * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static constexpr mint raw(int v) { mint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T> * = nullptr> constexpr static_modint(T v) : _v(0) { std::int64_t x = (std::int64_t)(v % (std::int64_t)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T> * = nullptr> constexpr static_modint(T v) : _v(0) { _v = (unsigned int)(v % umod()); } constexpr unsigned int val() const { return _v; } constexpr mint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } constexpr mint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } constexpr mint operator++(int) { mint result = *this; ++*this; return result; } constexpr mint operator--(int) { mint result = *this; --*this; return result; } constexpr mint &operator+=(const mint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr mint &operator-=(const mint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr mint &operator*=(const mint &rhs) { std::uint64_t z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } constexpr mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } constexpr mint operator+() const { return *this; } constexpr mint operator-() const { return mint() - *this; } constexpr mint pow(std::int64_t n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend constexpr mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend constexpr mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend constexpr mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend constexpr mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend constexpr bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend constexpr bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } friend std::istream &operator>>(std::istream &is, mint &rhs) { std::int64_t t; is >> t; rhs = mint(t); return is; } friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) { return os << rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T> * = nullptr> dynamic_modint(T v) { std::int64_t x = (std::int64_t)(v % (std::int64_t)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T> * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint &operator+=(const mint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator-=(const mint &rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator*=(const mint &rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(std::int64_t n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } friend std::istream &operator>>(std::istream &is, mint &rhs) { std::int64_t t; is >> t; rhs = mint(t); return is; } friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) { return os << rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998 = static_modint<998244353>; using modint107 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal #line 3 "/home/kuhaku/atcoder/github/algo/lib/template/macro.hpp" #define FOR(i, m, n) for (int i = (m); i < int(n); ++i) #define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i) #define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i) #define rep(i, n) FOR (i, 0, n) #define repn(i, n) FOR (i, 1, n + 1) #define repr(i, n) FORR (i, n, 0) #define repnr(i, n) FORR (i, n + 1, 1) #define all(s) (s).begin(), (s).end() #line 3 "/home/kuhaku/atcoder/github/algo/lib/template/sonic.hpp" struct Sonic { Sonic() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); } constexpr void operator()() const {} } sonic; #line 5 "/home/kuhaku/atcoder/github/algo/lib/template/atcoder.hpp" using namespace std; using ll = std::int64_t; using ld = long double; template <class T, class U> std::istream &operator>>(std::istream &is, std::pair<T, U> &p) { return is >> p.first >> p.second; } template <class T> std::istream &operator>>(std::istream &is, std::vector<T> &v) { for (T &i : v) is >> i; return is; } template <class T, class U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) { return os << '(' << p.first << ',' << p.second << ')'; } template <class T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) { for (auto it = v.begin(); it != v.end(); ++it) { os << (it == v.begin() ? "" : " ") << *it; } return os; } template <class Head, class... Tail> void co(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cout << head << '\n'; else std::cout << head << ' ', co(std::forward<Tail>(tail)...); } template <class Head, class... Tail> void ce(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cerr << head << '\n'; else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...); } template <typename T, typename... Args> auto make_vector(T x, int arg, Args... args) { if constexpr (sizeof...(args) == 0) return std::vector<T>(arg, x); else return std::vector(arg, make_vector<T>(x, args...)); } void setp(int n) { std::cout << std::fixed << std::setprecision(n); } void Yes(bool is_correct = true) { std::cout << (is_correct ? "Yes" : "No") << '\n'; } void No(bool is_not_correct = true) { Yes(!is_not_correct); } void YES(bool is_correct = true) { std::cout << (is_correct ? "YES" : "NO") << '\n'; } void NO(bool is_not_correct = true) { YES(!is_not_correct); } void Takahashi(bool is_correct = true) { std::cout << (is_correct ? "Takahashi" : "Aoki") << '\n'; } void Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); } #line 5 "a.cpp" using Mint = modint998; int main(void) { int n; cin >> n; vector<int> a(n); cin >> a; vector<Mint> dpa1(n), dpa2(n); fenwick_tree<ll> fta1(n), fta2(n); vector<int> ord(n); iota(all(ord), 0); sort(all(ord), [&a](int l, int r) { if (a[l] == a[r]) return l > r; return a[l] > a[r]; }); for (int idx : ord) { dpa1[idx] = fta1.sum(idx); dpa2[idx] = fta2.sum(idx); fta1.add(idx, a[idx]); fta2.add(idx, 1); } vector<Mint> dpb1(n), dpb2(n); fenwick_tree<ll> ftb1(n), ftb2(n); sort(all(ord), [&a](int l, int r) { if (a[l] == a[r]) return l < r; return a[l] < a[r]; }); for (int idx : ord) { dpb1[idx] = ftb1.sum(idx, n); dpb2[idx] = ftb2.sum(idx, n); ftb1.add(idx, a[idx]); ftb2.add(idx, 1); } Mint ans = 0; rep (i, n) { ans += dpa1[i] * dpb2[i] + dpa2[i] * dpb1[i] + a[i] * dpa2[i] * dpb2[i]; } co(ans); return 0; }