結果
| 問題 |
No.1385 Simple Geometry 2
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-09-19 10:41:07 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 170 ms / 500 ms |
| コード長 | 4,928 bytes |
| コンパイル時間 | 12,773 ms |
| コンパイル使用メモリ | 377,756 KB |
| 実行使用メモリ | 37,632 KB |
| 最終ジャッジ日時 | 2024-07-05 21:39:05 |
| 合計ジャッジ時間 | 26,860 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 65 |
コンパイルメッセージ
warning: unused import: `BufWriter`
--> src/main.rs:5:22
|
5 | use std::io::{Write, BufWriter};
| ^^^^^^^^^
|
= note: `#[warn(unused_imports)]` on by default
warning: unused import: `Write`
--> src/main.rs:5:15
|
5 | use std::io::{Write, BufWriter};
| ^^^^^
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
/// Complex numbers.
/// Verified by: ATC001-C (http://atc001.contest.atcoder.jp/submissions/1175487)
mod complex {
use std::ops::{Add, Sub, Mul, Neg};
#[derive(Clone, Copy, Debug)]
pub struct Complex<T = f64> {
pub x: T,
pub y: T,
}
impl<T> Complex<T> {
pub fn new(x: T, y: T) -> Self { Complex { x: x, y: y } }
}
impl<T> Add for Complex<T>
where T: Add<Output = T> {
type Output = Self;
fn add(self, other: Self) -> Self {
Self::new(self.x + other.x, self.y + other.y)
}
}
impl<T> Sub for Complex<T>
where T: Sub<Output = T> {
type Output = Self;
fn sub(self, other: Self) -> Self {
Self::new(self.x - other.x, self.y - other.y)
}
}
impl<T: Copy> Mul for Complex<T>
where T: Add<Output = T> +
Sub<Output = T> +
Mul<Output = T> {
type Output = Self;
fn mul(self, other: Self) -> Self {
Self::new(self.x * other.x - self.y * other.y,
self.x * other.y + self.y * other.x)
}
}
impl<T: Copy + Neg<Output = T>> Complex<T> {
pub fn conj(self) -> Self {
Self::new(self.x, -self.y)
}
}
} // complex
// https://yukicoder.me/problems/no/1385 (3)
// 三角形の面積は 点の座標に関する線形関数 + 定数 として表せるので、累積和ができる。
// 具体的には、複素数 a, b, c に対してこれらを頂点とする三角形の面積は |Im((b-c)conj(a-c))|/2 である。
// 絶対値の中身は a, b, c が反時計回りに並んでいる時に正。
// 点列を時計回りに a[0], ..., a[N-1] として、j < k < i のときの a = a[j], b = a[k], c = a[i] としたときの和を計算することにする。
// p[i] = \sum_{j < k < i} conj(a[j])a[k] が計算できていれば、c = a[i] のときの Im 内部の和は
// (p[i] - conj(a[i]) \sum_{j < i} ja[j] - a[i] \sum_{j<i}(i - j - 1)conj(a[j]) + |a|^2 i(i-1)/2) / 2 である。
// これの計算のためには q[i] = \sum_{j < i} ja[j] と r[i] = \sum_{j < i} a[j] がわかっていればよく、
// これらを使うと (p[i] - conj(a[i]) q[i] + a[i]conj(q[j]) - a[i](i-1)conj(r[i]) + |a|^2 i(i-1)/2) / 2 である。
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
fn solve() {
input! {
n: usize, l: f64,
t: [f64; n],
}
use complex::*;
let mut a = vec![Complex::new(0.0, 0.0); n];
for i in 0..n {
let angle = std::f64::consts::PI * t[i] * 2.0 / l;
a[i] = Complex::new(angle.cos(), angle.sin());
}
let mut p = vec![Complex::new(0.0, 0.0); n + 1];
let mut q = vec![Complex::new(0.0, 0.0); n + 1];
let mut r = vec![Complex::new(0.0, 0.0); n + 1];
for i in 0..n {
r[i + 1] = r[i] + a[i];
q[i + 1] = q[i] + a[i] * Complex::new(i as f64, 0.0);
if i > 0 {
p[i + 1] = p[i] + a[i] * r[i].conj();
}
}
let mut ans = Complex::new(0.0, 0.0);
for i in 0..n {
ans = ans + p[i] - a[i].conj() * q[i] + a[i] * q[i].conj()
- a[i] * r[i].conj() * Complex::new(i as f64 - 1.0, 0.0);
}
let nn = n as f64;
println!("{}", ans.y * 3.0 / nn / (nn - 1.0) / (nn - 2.0));
}