結果

問題 No.2522 Fall in love, Girls!
ユーザー Shirotsume
提出日時 2023-09-22 04:31:14
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 862 ms / 2,000 ms
コード長 2,610 bytes
コンパイル時間 342 ms
コンパイル使用メモリ 82,040 KB
実行使用メモリ 176,696 KB
最終ジャッジ日時 2024-09-25 13:17:08
合計ジャッジ時間 15,714 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys, time, random
from collections import deque, Counter, defaultdict
input = lambda: sys.stdin.readline().rstrip()
ii = lambda: int(input())
mi = lambda: map(int, input().split())
li = lambda: list(mi())
inf = 2 ** 63 - 1
mod = 998244353
class Combinatorics():
def __init__(self, mod, maxi):
self.mod = mod
self.maxi = maxi
self.facs = [1] * (maxi + 1)
self.factinvs = [1] * (maxi + 1)
self.invs = [1] * (maxi + 1)
for i in range(2, self.maxi + 1):
self.facs[i] = ((self.facs[i-1] * i) % self.mod)
self.invs[i] = (-self.invs[self.mod % i] * (self.mod // i)) % self.mod
self.factinvs[i] = (self.factinvs[i-1] * self.invs[i]) % self.mod
def choose(self, n, k) -> int:
if k < 0 or k > n: return 0
if k == 0 or k == n: return 1
k = min(k, n - k)
return (((self.facs[n] * self.factinvs[k]) % self.mod) * self.factinvs[n-k]) % self.mod
def perm(self, n, k) -> int:
return (self.choose(n, k) * self.facs[k]) % self.mod
def homop(self, n, k) -> int:
if n == k == 0:
return 1
return self.choose(n + k - 1, k)
C = Combinatorics(mod, 10 ** 6 + 2)
n, m, k = mi()
graph = [[] for _ in range(n)]
invgraph = [[] for _ in range(n)]
S = set()
for _ in range(k):
x, y = mi()
x -= 1; y -= 1
S.add(x)
S.add(y)
graph[x].append(y)
invgraph[y].append(x)
if k == 0:
ans = (n - m) * C.facs[n - 1]
ans %= mod
else:
S = list(sorted(S))
N = len(S)
dp = [0 for _ in range(1 << N)]
subs = len([i for i in S if i < m])
mains = len([i for i in S if i >= m])
mgraph = [[] for _ in range(N)]
minvgraph = [[] for _ in range(N)]
for i in range(N):
for to in graph[S[i]]:
mgraph[i].append(S.index(to))
minvgraph[S.index(to)].append(i)
dp[0] = 1
for bit in range(1 << N):
for i in range(N):
if 1 & (bit >> i):
f = True
for to in minvgraph[i]:
if 1 & (bit >> to):
f = False
break
if f:
dp[bit] += dp[bit ^ (1 << i)]
dp[bit] %= mod
ans = 0
for i in range(m, n):
if i in S and len(invgraph[i]) == 0:
j = S.index(i)
ans += C.perm(n - 1, n - N) * dp[((1 << N) - 1) ^ (1 << j)]
ans %= mod
if i not in S:
ans += C.perm(n - 1, n - N - 1) * dp[(1 << N) - 1]
ans %= mod
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0