結果
問題 | No.2522 Fall in love, Girls! |
ユーザー |
|
提出日時 | 2023-09-22 04:31:14 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 862 ms / 2,000 ms |
コード長 | 2,610 bytes |
コンパイル時間 | 342 ms |
コンパイル使用メモリ | 82,040 KB |
実行使用メモリ | 176,696 KB |
最終ジャッジ日時 | 2024-09-25 13:17:08 |
合計ジャッジ時間 | 15,714 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 30 |
ソースコード
import sys, time, randomfrom collections import deque, Counter, defaultdictinput = lambda: sys.stdin.readline().rstrip()ii = lambda: int(input())mi = lambda: map(int, input().split())li = lambda: list(mi())inf = 2 ** 63 - 1mod = 998244353class Combinatorics():def __init__(self, mod, maxi):self.mod = modself.maxi = maxiself.facs = [1] * (maxi + 1)self.factinvs = [1] * (maxi + 1)self.invs = [1] * (maxi + 1)for i in range(2, self.maxi + 1):self.facs[i] = ((self.facs[i-1] * i) % self.mod)self.invs[i] = (-self.invs[self.mod % i] * (self.mod // i)) % self.modself.factinvs[i] = (self.factinvs[i-1] * self.invs[i]) % self.moddef choose(self, n, k) -> int:if k < 0 or k > n: return 0if k == 0 or k == n: return 1k = min(k, n - k)return (((self.facs[n] * self.factinvs[k]) % self.mod) * self.factinvs[n-k]) % self.moddef perm(self, n, k) -> int:return (self.choose(n, k) * self.facs[k]) % self.moddef homop(self, n, k) -> int:if n == k == 0:return 1return self.choose(n + k - 1, k)C = Combinatorics(mod, 10 ** 6 + 2)n, m, k = mi()graph = [[] for _ in range(n)]invgraph = [[] for _ in range(n)]S = set()for _ in range(k):x, y = mi()x -= 1; y -= 1S.add(x)S.add(y)graph[x].append(y)invgraph[y].append(x)if k == 0:ans = (n - m) * C.facs[n - 1]ans %= modelse:S = list(sorted(S))N = len(S)dp = [0 for _ in range(1 << N)]subs = len([i for i in S if i < m])mains = len([i for i in S if i >= m])mgraph = [[] for _ in range(N)]minvgraph = [[] for _ in range(N)]for i in range(N):for to in graph[S[i]]:mgraph[i].append(S.index(to))minvgraph[S.index(to)].append(i)dp[0] = 1for bit in range(1 << N):for i in range(N):if 1 & (bit >> i):f = Truefor to in minvgraph[i]:if 1 & (bit >> to):f = Falsebreakif f:dp[bit] += dp[bit ^ (1 << i)]dp[bit] %= modans = 0for i in range(m, n):if i in S and len(invgraph[i]) == 0:j = S.index(i)ans += C.perm(n - 1, n - N) * dp[((1 << N) - 1) ^ (1 << j)]ans %= modif i not in S:ans += C.perm(n - 1, n - N - 1) * dp[(1 << N) - 1]ans %= modprint(ans)