結果
| 問題 |
No.2484 Add to Variables
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-09-23 17:40:15 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 171 ms / 2,000 ms |
| コード長 | 12,967 bytes |
| コンパイル時間 | 3,083 ms |
| コンパイル使用メモリ | 228,024 KB |
| 最終ジャッジ日時 | 2025-02-17 01:46:35 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 39 |
ソースコード
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
ll myRand(ll B) {
return (ull)rng() % B;
}
inline double time() {
return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;
}
template <int mod>
struct static_modint {
using mint = static_modint;
int x;
static_modint() : x(0) {}
static_modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
mint& operator+=(const mint& rhs) {
if ((x += rhs.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint& rhs) {
if ((x += mod - rhs.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint& rhs) {
x = (int) (1LL * x * rhs.x % mod);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint pow(long long n) const {
mint _x = *this, r = 1;
while (n) {
if (n & 1) r *= _x;
_x *= _x;
n >>= 1;
}
return r;
}
mint inv() const { return pow(mod - 2); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs.x == rhs.x;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs.x != rhs.x;
}
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, mint &a) {
int64_t t; is >> t;
a = static_modint<mod>(t);
return (is);
}
};
const unsigned int mod = 998244353;
using modint = static_modint<mod>;
modint mod_pow(ll n, ll x) { return modint(n).pow(x); }
modint mod_pow(modint n, ll x) { return n.pow(x); }
template <typename T>
struct Comination {
vector<T> p, invp;
Comination(int sz) : p(sz+1), invp(sz+1) {
p[0] = 1;
for (int i = 1; i <= sz; ++i) {
p[i] = p[i-1] * i;
}
invp[sz] = p[sz].inv();
for (int i = sz-1; i >= 0; --i) {
invp[i] = invp[i+1] * (i+1);
}
}
T comb(int n, int r) {
if (r < 0 or n < r) return 0;
return p[n]*invp[n-r]*invp[r];
}
T big_comb(T n, int r) {
T res = invp[r];
for (int i = 0; i < r; ++i) {
res *= (n-i);
}
return res;
}
};
using Comb = Comination<modint>;
Comb p(1<<20);
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
constexpr int countr_zero_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
struct fft_info {
int g;
static constexpr int rank2 = countr_zero_constexpr(mod - 1);
std::array<modint, rank2 + 1> root; // root[i]^(2^i) == 1
std::array<modint, rank2 + 1> iroot; // root[i] * iroot[i] == 1
std::array<modint, std::max(0, rank2 - 2 + 1)> rate2;
std::array<modint, std::max(0, rank2 - 2 + 1)> irate2;
std::array<modint, std::max(0, rank2 - 3 + 1)> rate3;
std::array<modint, std::max(0, rank2 - 3 + 1)> irate3;
fft_info() {
g = primitive_root<mod>;
root[rank2] = (mod_pow(g, (mod - 1) >> rank2));
iroot[rank2] = root[rank2].inv();
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
modint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
modint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
void butterfly(vector<modint> &a) {
int n = int(a.size());
int h = __builtin_ctz(n);
static const fft_info info;
int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len < h) {
if (h - len == 1) {
int pp = 1 << (h - len - 1);
modint rot = 1;
for (int s = 0; s < (1 << len); s++) {
int offset = s << (h - len);
for (int i = 0; i < pp; i++) {
auto l = a[i + offset];
auto r = a[i + offset + pp] * rot;
a[i + offset] = l + r;
a[i + offset + pp] = l - r;
}
if (s + 1 != (1 << len))
rot *= info.rate2[__builtin_ctz(~(unsigned int)(s))];
}
len++;
} else {
// 4-base
int pp = 1 << (h - len - 2);
modint rot = 1, imag = info.root[2];
for (int s = 0; s < (1 << len); s++) {
modint rot2 = rot * rot;
modint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < pp; i++) {
auto mod2 = 1ULL * mod * mod;
auto a0 = 1ULL * a[i + offset].x;
auto a1 = 1ULL * a[i + offset + pp].x * rot.x;
auto a2 = 1ULL * a[i + offset + 2 * pp].x * rot2.x;
auto a3 = 1ULL * a[i + offset + 3 * pp].x * rot3.x;
auto a1na3imag =
1ULL * modint(a1 + mod2 - a3).x * imag.x;
auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * pp] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * pp] = a0 + na2 + a1na3imag;
a[i + offset + 3 * pp] = a0 + na2 + (mod2 - a1na3imag);
}
if (s + 1 != (1 << len))
rot *= info.rate3[__builtin_ctz(~(unsigned int)(s))];
}
len += 2;
}
}
}
void butterfly_inv(vector<modint> &a) {
int n = int(a.size());
int h = __builtin_ctz(n);
static const fft_info info;
int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len) {
if (len == 1) {
int pp = 1 << (h - len);
modint irot = 1;
for (int s = 0; s < (1 << (len - 1)); s++) {
int offset = s << (h - len + 1);
for (int i = 0; i < pp; i++) {
auto l = a[i + offset];
auto r = a[i + offset + pp];
a[i + offset] = l + r;
a[i + offset + pp] =
(unsigned long long)(mod + l.x - r.x) *
irot.x;
}
if (s + 1 != (1 << (len - 1)))
irot *= info.irate2[__builtin_ctz(~(unsigned int)(s))];
}
len--;
} else {
// 4-base
int pp = 1 << (h - len);
modint irot = 1, iimag = info.iroot[2];
for (int s = 0; s < (1 << (len - 2)); s++) {
modint irot2 = irot * irot;
modint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < pp; i++) {
auto a0 = 1ULL * a[i + offset + 0 * pp].x;
auto a1 = 1ULL * a[i + offset + 1 * pp].x;
auto a2 = 1ULL * a[i + offset + 2 * pp].x;
auto a3 = 1ULL * a[i + offset + 3 * pp].x;
auto a2na3iimag = 1ULL * modint((mod + a2 - a3) * iimag.x).x;
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * pp] =
(a0 + (mod - a1) + a2na3iimag) * irot.x;
a[i + offset + 2 * pp] =
(a0 + a1 + (mod - a2) + (mod - a3)) *
irot2.x;
a[i + offset + 3 * pp] =
(a0 + (mod - a1) + (mod - a2na3iimag)) *
irot3.x;
}
if (s + 1 != (1 << (len - 2)))
irot *= info.irate3[__builtin_ctz(~(unsigned int)(s))];
}
len -= 2;
}
}
}
vector<modint> convolution_naive(const vector<modint>& a, const vector<modint>& b) {
int n = int(a.size()), m = int(b.size());
vector<modint> res(n + m - 1);
if (n < m) {
for (int j = 0; j < m; ++j) {
for (int i = 0; i < n; ++i) {
res[i + j] += a[i] * b[j];
}
}
} else {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
res[i + j] += a[i] * b[j];
}
}
}
return res;
}
vector<modint> convolution_fft(vector<modint>& a, vector<modint>& b) {
int n = int(a.size()), m = int(b.size());
int z = 1;
while (z < n + m - 1) z *= 2;
a.resize(z);
butterfly(a);
b.resize(z);
butterfly(b);
for (int i = 0; i < z; ++i) {
a[i] *= b[i];
}
butterfly_inv(a);
a.resize(n + m - 1);
modint iz = modint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
template <class T>
vector<T> convolution(const vector<T>& a, const vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n or !m) return {};
int z = 1;
while (z < n + m - 1) z *= 2;
assert((mod - 1) % z == 0);
vector<modint> a2(n), b2(m);
for (int i = 0; i < n; ++i) {
a2[i] = modint(a[i]);
}
for (int i = 0; i < m; ++i) {
b2[i] = modint(b[i]);
}
vector<T> c(n + m - 1);
vector<modint> c2;
if (min(n,m) <= 60) c2 = convolution_naive(a2, b2);
else c2 = convolution_fft(a2, b2);
for (int i = 0; i < n + m - 1; ++i) {
c[i] = c2[i].x;
}
return c;
}
int main(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
int n,m; cin >> n >> m;
vector<int> b(n);
for (int i = 0; i < n; ++i) {
cin >> b[i];
}
vector<int> a(n-1);
int l = 0, r = 0;
for (int i = 1; i < n; ++i) {
a[i-1] = b[i] - b[i-1];
if (a[i-1] < 0) l += abs(a[i-1]);
else r += a[i-1];
}
vector<modint> dp(m+1); dp[0] = 1;
for (int dif : a) {
vector<modint> f(m+1);
for (int i = abs(dif); i <= m; i += 2) {
int j = (i-abs(dif))/2;
f[i] = p.invp[j] * p.invp[abs(dif)+j];
}
auto ndp = convolution(dp, f);
swap(dp, ndp);
while (dp.size() > m+1) dp.pop_back();
}
modint res = 0;
for (int i = 0; i <= m; ++i) {
if (i > b[0]+b.back()) break;
int al = b[0]+b.back()-i;
if (al < 0) continue;
int L = b[0]-al, R = b.back()-al;
if (l > L or r > R) continue;
res += dp[L+R] * p.invp[al] * p.invp[m-i];
}
cout << res*p.p[m] << endl;
}