結果

問題 No.2587 Random Walk on Tree
ユーザー akakimidoriakakimidori
提出日時 2023-09-23 20:58:01
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 2,729 ms / 10,000 ms
コード長 27,426 bytes
コンパイル時間 15,412 ms
コンパイル使用メモリ 403,544 KB
実行使用メモリ 35,188 KB
最終ジャッジ日時 2024-09-27 12:51:00
合計ジャッジ時間 58,501 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,812 KB
testcase_01 AC 1 ms
6,816 KB
testcase_02 AC 1 ms
6,944 KB
testcase_03 AC 1 ms
6,944 KB
testcase_04 AC 1 ms
6,944 KB
testcase_05 AC 3 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 1 ms
6,940 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 1 ms
6,944 KB
testcase_10 AC 1 ms
6,940 KB
testcase_11 AC 5 ms
6,940 KB
testcase_12 AC 22 ms
6,940 KB
testcase_13 AC 37 ms
6,940 KB
testcase_14 AC 8 ms
6,944 KB
testcase_15 AC 1,907 ms
17,244 KB
testcase_16 AC 1,029 ms
12,432 KB
testcase_17 AC 1,108 ms
12,076 KB
testcase_18 AC 200 ms
6,940 KB
testcase_19 AC 1,962 ms
25,588 KB
testcase_20 AC 1,739 ms
17,524 KB
testcase_21 AC 2,334 ms
20,340 KB
testcase_22 AC 2,347 ms
35,188 KB
testcase_23 AC 2,209 ms
23,412 KB
testcase_24 AC 1,947 ms
18,512 KB
testcase_25 AC 1,331 ms
28,692 KB
testcase_26 AC 2,729 ms
19,716 KB
testcase_27 AC 2,475 ms
19,316 KB
testcase_28 AC 2,392 ms
18,804 KB
testcase_29 AC 2,381 ms
17,776 KB
testcase_30 AC 1,989 ms
18,040 KB
testcase_31 AC 1,938 ms
17,400 KB
testcase_32 AC 2,409 ms
17,652 KB
testcase_33 AC 1 ms
6,940 KB
testcase_34 AC 1,277 ms
25,364 KB
testcase_35 AC 1,305 ms
25,352 KB
testcase_36 AC 1,358 ms
24,968 KB
testcase_37 AC 1,380 ms
24,968 KB
testcase_38 AC 1,848 ms
17,872 KB
testcase_39 AC 1,984 ms
17,356 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: type alias `Deque` is never used
 --> src/main.rs:1:6
  |
1 | type Deque<T> = std::collections::VecDeque<T>;
  |      ^^^^^
  |
  = note: `#[warn(dead_code)]` on by default

ソースコード

diff #

type Deque<T> = std::collections::VecDeque<T>;

fn main() {
    input! {
        n: usize,
        m: usize,
        s: usize1,
        t: usize1,
        e: [(usize1, usize1); n - 1],
    }
    let mut g = vec![vec![]; n];
    for (a, b) in e {
        g[a].push(b);
        g[b].push(a);
    }
    let root = s;
    let mut topo = vec![root];
    let mut parent = vec![n; n];
    for i in 0..n {
        let v = topo[i];
        for u in g[v].clone() {
            g[u].retain(|p| *p != v);
            parent[u] = v;
            topo.push(u);
        }
    }
    let mut size = vec![1i32; n];
    for &v in topo.iter().rev() {
        g[v].sort_by_key(|u| -size[*u]);
        size[v] += g[v].iter().map(|u| size[*u]).sum::<i32>();
    }
    let solve_path = |a: Vec<Vec<Vec<M>>>| -> Vec<Vec<M>> {
        let a = a
            .into_iter()
            .map(|a| {
                let mut b = vec![vec![vec![]; 2]; 2];
                b[0][1] = a[0].clone();
                b[1][0] = a[0].clone();
                b[1][1] = a[1].clone();
                b
            })
            .collect::<Vec<_>>();
        let ans = product(a, |l, r| {
            let mut res = vec![vec![vec![]; 2]; 2];
            for (a, l) in l.iter().enumerate() {
                for (b, l) in l.iter().enumerate() {
                    for (c, r) in r.iter().enumerate() {
                        for (d, r) in r.iter().enumerate() {
                            if b + c == 1 {
                                continue;
                            }
                            let v = l.multiply(r);
                            if (c, b) == (0, 0) {
                                res[a][d].sub_assign(&v);
                            } else {
                                res[a][d].add_assign(&v);
                            }
                        }
                    }
                }
            }
            res
        });
        vec![ans[0][1].clone(), ans[1][1].clone()]
    };
    let child_product = |a: Vec<Vec<Vec<M>>>| -> Vec<Vec<M>> {
        product(a, |a, b| {
            let mut c = vec![vec![]; 2];
            for (i, a) in a.iter().enumerate() {
                for (j, b) in b.iter().enumerate() {
                    if (i, j) != (0, 0) {
                        c[i & j].add_assign(&a.multiply(b));
                    }
                }
            }
            c
        })
    };
    let lift = |a: Vec<Vec<M>>| -> Vec<Vec<M>> {
        let c = [[M::zero(), -M::one()], [M::one(), -M::one()]];
        let mut res = vec![vec![]; 2];
        res[0].add_assign(&c[0].multiply(&a[1]));
        res[1].add_assign(&c[1].multiply(&a[1]));
        res[1].sub_assign(&c[0].multiply(&a[0]));
        res
    };
    let calc = recurse(|rec, mut v: usize| -> Vec<Vec<M>> {
        let mut poly = vec![];
        loop {
            let mut a = g[v].iter().skip(1).map(|u| rec(*u)).collect::<Vec<_>>();
            a.push(vec![vec![], vec![M::one()]]);
            let a = child_product(a);
            poly.push(lift(a));
            if let Some(u) = g[v].get(0) {
                v = *u;
            } else {
                break;
            }
        }
        solve_path(poly)
    });
    let mut nu = vec![];
    let mut de = vec![];
    let mut pos = t;
    let mut ban = n;
    let mut geta = 0;
    loop {
        let mut a = g[pos]
            .iter()
            .filter(|p| **p != ban)
            .map(|u| calc(*u))
            .collect::<Vec<_>>();
        a.push(vec![vec![], vec![M::one()]]);
        let a = child_product(a);
        nu.push(a[1].clone());
        de.push(lift(a));
        if pos == s {
            break;
        }
        ban = pos;
        pos = parent[pos];
        geta += 1;
    }
    let mut nu = product(nu, |a, b| a.multiply(&b));
    nu.splice(0..0, (0..geta).map(|_| M::zero()));
    let mut de = solve_path(de)[1].clone();
    let mut k = m;
    while k > 0 {
        let mut f = de.clone();
        for f in f[1..].iter_mut().step_by(2) {
            *f = -*f;
        }
        nu = nu.multiply(&f).into_iter().skip(k & 1).step_by(2).collect();
        de = de.multiply(&f).into_iter().step_by(2).collect();
        k >>= 1;
    }
    println!("{}", nu[0]);
}

fn product<T, F>(mut a: Vec<T>, mul: F) -> T
where
    F: Fn(T, T) -> T,
{
    assert!(!a.is_empty());
    while a.len() > 1 {
        let mut b = vec![];
        while a.len() >= 2 {
            let r = a.pop().unwrap();
            let l = a.pop().unwrap();
            b.push(mul(l, r));
        }
        b.extend(a.pop());
        b.reverse();
        a = b;
    }
    a.pop().unwrap()
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
// ---------- begin ModInt ----------
mod modint {

    use std::marker::*;
    use std::ops::*;

    pub trait Modulo {
        fn modulo() -> u32;
        fn rem() -> u32;
        fn ini() -> u64;
        fn reduce(x: u64) -> u32 {
            debug_assert!(x < (Self::modulo() as u64) << 32);
            let b = (x as u32 * Self::rem()) as u64;
            let t = x + b * Self::modulo() as u64;
            let mut c = (t >> 32) as u32;
            if c >= Self::modulo() {
                c -= Self::modulo();
            }
            c as u32
        }
    }

    #[allow(dead_code)]
    pub enum Mod1_000_000_007 {}

    impl Modulo for Mod1_000_000_007 {
        fn modulo() -> u32 {
            1_000_000_007
        }
        fn rem() -> u32 {
            2226617417
        }
        fn ini() -> u64 {
            582344008
        }
    }

    #[allow(dead_code)]
    pub enum Mod998_244_353 {}

    impl Modulo for Mod998_244_353 {
        fn modulo() -> u32 {
            998_244_353
        }
        fn rem() -> u32 {
            998244351
        }
        fn ini() -> u64 {
            932051910
        }
    }

    #[allow(dead_code)]
    pub fn generate_umekomi_modulo(p: u32) {
        assert!(
            p < (1 << 31)
                && p > 2
                && p & 1 == 1
                && (2u32..).take_while(|v| v * v <= p).all(|k| p % k != 0)
        );
        let mut t = 1u32;
        let mut s = !p + 1;
        let mut n = !0u32 >> 2;
        while n > 0 {
            if n & 1 == 1 {
                t *= s;
            }
            s *= s;
            n >>= 1;
        }
        let mut ini = (1u64 << 32) % p as u64;
        ini = (ini << 32) % p as u64;
        assert!(t * p == !0);
        println!("pub enum Mod{} {{}}", p);
        println!("impl Modulo for Mod{} {{", p);
        println!("    fn modulo() -> u32 {{");
        println!("        {}", p);
        println!("    }}");
        println!("    fn rem() -> u32 {{");
        println!("        {}", t);
        println!("    }}");
        println!("    fn ini() -> u64 {{");
        println!("        {}", ini);
        println!("    }}");
        println!("}}");
        let mut f = vec![];
        let mut n = p - 1;
        for i in 2.. {
            if i * i > n {
                break;
            }
            if n % i == 0 {
                f.push(i);
                while n % i == 0 {
                    n /= i;
                }
            }
        }
        if n > 1 {
            f.push(n);
        }
        let mut order = 1;
        let mut n = p - 1;
        while n % 2 == 0 {
            n /= 2;
            order <<= 1;
        }
        let z = (2u64..)
            .find(|z| {
                f.iter()
                    .all(|f| mod_pow(*z, ((p - 1) / *f) as u64, p as u64) != 1)
            })
            .unwrap();
        let zeta = mod_pow(z, ((p - 1) / order) as u64, p as u64);
        println!("impl transform::NTTFriendly for Mod{} {{", p);
        println!("    fn order() -> usize {{");
        println!("        {}", order);
        println!("    }}");
        println!("    fn zeta() -> u32 {{");
        println!("        {}", zeta);
        println!("    }}");
        println!("}}");
    }

    pub struct ModInt<T>(u32, PhantomData<T>);

    impl<T> Clone for ModInt<T> {
        fn clone(&self) -> Self {
            ModInt::build(self.0)
        }
    }

    impl<T> Copy for ModInt<T> {}

    impl<T: Modulo> Add for ModInt<T> {
        type Output = ModInt<T>;
        fn add(self, rhs: Self) -> Self::Output {
            let mut d = self.0 + rhs.0;
            if d >= T::modulo() {
                d -= T::modulo();
            }
            Self::build(d)
        }
    }

    impl<T: Modulo> AddAssign for ModInt<T> {
        fn add_assign(&mut self, rhs: Self) {
            *self = *self + rhs;
        }
    }

    impl<T: Modulo> Sub for ModInt<T> {
        type Output = ModInt<T>;
        fn sub(self, rhs: Self) -> Self::Output {
            let mut d = self.0 - rhs.0;
            if self.0 < rhs.0 {
                d += T::modulo();
            }
            Self::build(d)
        }
    }

    impl<T: Modulo> SubAssign for ModInt<T> {
        fn sub_assign(&mut self, rhs: Self) {
            *self = *self - rhs;
        }
    }

    impl<T: Modulo> Mul for ModInt<T> {
        type Output = ModInt<T>;
        fn mul(self, rhs: Self) -> Self::Output {
            Self::build(T::reduce(self.0 as u64 * rhs.0 as u64))
        }
    }

    impl<T: Modulo> MulAssign for ModInt<T> {
        fn mul_assign(&mut self, rhs: Self) {
            *self = *self * rhs;
        }
    }

    impl<T: Modulo> Neg for ModInt<T> {
        type Output = ModInt<T>;
        fn neg(self) -> Self::Output {
            if self.0 == 0 {
                Self::zero()
            } else {
                Self::build(T::modulo() - self.0)
            }
        }
    }

    impl<T: Modulo> std::fmt::Display for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.get())
        }
    }

    impl<T: Modulo> std::fmt::Debug for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.get())
        }
    }

    impl<T: Modulo> std::str::FromStr for ModInt<T> {
        type Err = std::num::ParseIntError;
        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let val = s.parse::<u32>()?;
            Ok(ModInt::new(val))
        }
    }

    impl<T: Modulo> From<usize> for ModInt<T> {
        fn from(val: usize) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as usize) as u32)
        }
    }

    impl<T: Modulo> From<u64> for ModInt<T> {
        fn from(val: u64) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as u64) as u32)
        }
    }

    impl<T: Modulo> From<i64> for ModInt<T> {
        fn from(val: i64) -> ModInt<T> {
            let m = T::modulo() as i64;
            ModInt::new((val % m + m) as u32)
        }
    }

    #[allow(dead_code)]
    impl<T> ModInt<T> {
        fn build(d: u32) -> Self {
            ModInt(d, PhantomData)
        }
        pub fn zero() -> Self {
            Self::build(0)
        }
        pub fn is_zero(&self) -> bool {
            self.0 == 0
        }
    }

    #[allow(dead_code)]
    impl<T: Modulo> ModInt<T> {
        pub fn new_unchecked(d: u32) -> Self {
            Self::build(T::reduce(d as u64 * T::ini()))
        }
        pub fn new(d: u32) -> Self {
            Self::new_unchecked(d % T::modulo())
        }
        pub fn one() -> Self {
            Self::new_unchecked(1)
        }
        pub fn get(&self) -> u32 {
            T::reduce(self.0 as u64)
        }
        pub fn pow(&self, mut n: u64) -> Self {
            let mut t = Self::one();
            let mut s = *self;
            while n > 0 {
                if n & 1 == 1 {
                    t *= s;
                }
                s *= s;
                n >>= 1;
            }
            t
        }
        pub fn inv(&self) -> Self {
            assert!(!self.is_zero());
            self.pow((T::modulo() - 2) as u64)
        }
    }

    pub fn mod_pow(mut r: u64, mut n: u64, m: u64) -> u64 {
        let mut t = 1 % m;
        while n > 0 {
            if n & 1 == 1 {
                t = t * r % m;
            }
            r = r * r % m;
            n >>= 1;
        }
        t
    }
}
// ---------- end ModInt ----------
// ---------- begin Precalc ----------
mod precalc {
    use super::modint::*;
    #[allow(dead_code)]
    pub struct Precalc<T> {
        inv: Vec<ModInt<T>>,
        fact: Vec<ModInt<T>>,
        ifact: Vec<ModInt<T>>,
    }
    #[allow(dead_code)]
    impl<T: Modulo> Precalc<T> {
        pub fn new(n: usize) -> Precalc<T> {
            let mut inv = vec![ModInt::one(); n + 1];
            let mut fact = vec![ModInt::one(); n + 1];
            let mut ifact = vec![ModInt::one(); n + 1];
            for i in 2..(n + 1) {
                fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
            }
            ifact[n] = fact[n].inv();
            if n > 0 {
                inv[n] = ifact[n] * fact[n - 1];
            }
            for i in (1..n).rev() {
                ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
                inv[i] = ifact[i] * fact[i - 1];
            }
            Precalc {
                inv: inv,
                fact: fact,
                ifact: ifact,
            }
        }
        pub fn inv(&self, n: usize) -> ModInt<T> {
            assert!(n > 0);
            self.inv[n]
        }
        pub fn fact(&self, n: usize) -> ModInt<T> {
            self.fact[n]
        }
        pub fn ifact(&self, n: usize) -> ModInt<T> {
            self.ifact[n]
        }
        pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[n - k]
        }
        pub fn comb(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[k] * self.ifact[n - k]
        }
    }
}
// ---------- end Precalc ----------

use modint::*;

pub trait NTTFriendly: modint::Modulo {
    fn order() -> usize;
    fn zeta() -> u32;
}

type M = ModInt<Mod998_244_353>;

impl NTTFriendly for Mod998_244_353 {
    fn order() -> usize {
        8388608
    }
    fn zeta() -> u32 {
        15311432
    }
}

// 列に対する命令をテキトーに詰めあわせ
// modint, primitive type の2つあたりで使うことを想定
// +, -, *
// zero を要求してないのに仮定してる場所がある
//
// 何も考えずに書き始めたらいろいろよくわからないことになった
// 整理
// 長さが等しいときの加算、減算、dot積はok
// 長さが異なるときはどうする?
// 0埋めされてるというイメージなので
// 加算、減算は素直だがdot積はイマイチ
// dot積だけ長さが等しいとしておく?
// あるいは0埋めのイメージを消すか

use std::ops::*;

pub trait Zero: Sized + Add<Output = Self> {
    fn zero() -> Self;
}

pub fn zero<T: Zero>() -> T {
    T::zero()
}

impl<T: Modulo> Zero for ModInt<T> {
    fn zero() -> Self {
        Self::zero()
    }
}

impl Zero for usize {
    fn zero() -> Self {
        0
    }
}

pub trait ArrayAdd {
    type Item;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayAdd for [T]
where
    T: Zero + Copy,
{
    type Item = T;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.add_assign(rhs);
        c
    }
}

pub trait ArrayAddAssign {
    type Item;
    fn add_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayAddAssign for [T]
where
    T: Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
    }
}

impl<T> ArrayAddAssign for Vec<T>
where
    T: Zero + Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().add_assign(rhs);
    }
}

pub trait ArraySub {
    type Item;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArraySub for [T]
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.sub_assign(rhs);
        c
    }
}

pub trait ArraySubAssign {
    type Item;
    fn sub_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArraySubAssign for [T]
where
    T: Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
    }
}

impl<T> ArraySubAssign for Vec<T>
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().sub_assign(rhs);
    }
}

pub trait ArrayDot {
    type Item;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayDot for [T]
where
    T: Mul<Output = T> + Copy,
{
    type Item = T;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        assert!(self.len() == rhs.len());
        self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
    }
}

pub trait ArrayDotAssign {
    type Item;
    fn dot_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayDotAssign for [T]
where
    T: MulAssign + Copy,
{
    type Item = T;
    fn dot_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() == rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
    }
}

pub trait ArrayMul {
    type Item;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayMul for [T]
where
    T: Zero + Mul<Output = T> + Copy,
{
    type Item = T;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.is_empty() || rhs.is_empty() {
            return vec![];
        }
        let mut res = vec![zero(); self.len() + rhs.len() - 1];
        for (i, a) in self.iter().enumerate() {
            for (c, b) in res[i..].iter_mut().zip(rhs) {
                *c = *c + *a * *b;
            }
        }
        res
    }
}

pub trait ArrayNTT {
    type Item;
    fn ntt(&mut self);
    fn intt(&mut self);
    fn multiply(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayNTT for [ModInt<T>]
where
    T: NTTFriendly,
{
    type Item = ModInt<T>;
    fn ntt(&mut self) {
        let f = self;
        let n = f.len();
        assert!(n.count_ones() == 1);
        assert!(n <= T::order());
        let len = n.trailing_zeros() as usize;
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_e = [ModInt::zero(); 30];
        let cnt2 = T::order().trailing_zeros() as usize;
        let mut e = ModInt::new_unchecked(T::zeta());
        let mut ie = e.inv();
        for i in (2..=cnt2).rev() {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e * e;
            ie = ie * ie;
        }
        let mut now = ModInt::one();
        for i in 0..(cnt2 - 1) {
            sum_e[i] = es[i] * now;
            now *= ies[i];
        }
        for ph in 1..=len {
            let p = 1 << (len - ph);
            let mut now = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y * now;
                    *x = l + r;
                    *y = l - r;
                }
                now *= sum_e[(!i).trailing_zeros() as usize];
            }
        }
    }
    fn intt(&mut self) {
        let f = self;
        let n = f.len();
        assert!(n.count_ones() == 1);
        assert!(n <= T::order());
        let len = n.trailing_zeros() as usize;
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_ie = [ModInt::zero(); 30];
        let cnt2 = T::order().trailing_zeros() as usize;
        let mut e = ModInt::new_unchecked(T::zeta());
        let mut ie = e.inv();
        for i in (2..=cnt2).rev() {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e * e;
            ie = ie * ie;
        }
        let mut now = ModInt::one();
        for i in 0..(cnt2 - 1) {
            sum_ie[i] = ies[i] * now;
            now *= es[i];
        }
        for ph in (1..=len).rev() {
            let p = 1 << (len - ph);
            let mut inow = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y;
                    *x = l + r;
                    *y = (l - r) * inow;
                }
                inow *= sum_ie[(!i).trailing_zeros() as usize];
            }
        }
        let ik = ModInt::new_unchecked((T::modulo() + 1) >> 1).pow(len as u64);
        for f in f.iter_mut() {
            *f *= ik;
        }
    }
    fn multiply(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.len().min(rhs.len()) <= 32 {
            return self.mul(rhs);
        }
        let size = (self.len() + rhs.len() - 1).next_power_of_two();
        let mut f = vec![ModInt::zero(); size];
        let mut g = vec![ModInt::zero(); size];
        f[..self.len()].copy_from_slice(self);
        g[..rhs.len()].copy_from_slice(rhs);
        f.ntt();
        g.ntt();
        f.dot_assign(&g);
        f.intt();
        f.truncate(self.len() + rhs.len() - 1);
        f
    }
}

pub trait PolynomialOperation {
    type Item;
    fn eval(&self, x: Self::Item) -> Self::Item;
    fn derivative(&self) -> Vec<Self::Item>;
    fn integral(&self) -> Vec<Self::Item>;
}

impl<T: Modulo> PolynomialOperation for [ModInt<T>] {
    type Item = ModInt<T>;
    fn eval(&self, x: Self::Item) -> Self::Item {
        self.iter().rev().fold(ModInt::zero(), |s, a| s * x + *a)
    }
    fn derivative(&self) -> Vec<Self::Item> {
        if self.len() <= 1 {
            return vec![];
        }
        self[1..]
            .iter()
            .enumerate()
            .map(|(k, a)| ModInt::new_unchecked(k as u32 + 1) * *a)
            .collect()
    }
    fn integral(&self) -> Vec<Self::Item> {
        if self.is_empty() {
            return vec![];
        }
        let mut inv = vec![ModInt::one(); self.len() + 1];
        let mut mul = ModInt::zero();
        for i in 1..=self.len() {
            mul += ModInt::one();
            inv[i] = inv[i - 1] * mul;
        }
        let mut prod = inv[self.len()].inv();
        for i in (1..=self.len()).rev() {
            inv[i] = self[i - 1] * inv[i - 1] * prod;
            prod *= mul;
            mul -= ModInt::one();
        }
        inv[0] = ModInt::zero();
        inv
    }
}

pub trait FPSOperation {
    type Item;
    fn inverse(&self, n: usize) -> Vec<Self::Item>;
    fn log(&self, n: usize) -> Vec<Self::Item>;
    fn exp(&self, n: usize) -> Vec<Self::Item>;
}

impl<T: NTTFriendly> FPSOperation for [ModInt<T>] {
    type Item = ModInt<T>;
    fn inverse(&self, n: usize) -> Vec<Self::Item> {
        assert!(self.len() > 0 && !self[0].is_zero());
        let len = n.next_power_of_two();
        assert!(2 * len <= T::order());
        let mut b = vec![ModInt::zero(); n];
        b[0] = self[0].inv();
        let mut f = Vec::with_capacity(2 * len);
        let mut g = Vec::with_capacity(2 * len);
        let mut size = 1;
        while size < n {
            g.clear();
            g.extend(b.iter().take(size));
            g.resize(2 * size, ModInt::zero());
            f.clear();
            f.extend(self.iter().take(2 * size));
            f.resize(2 * size, ModInt::zero());
            f.ntt();
            g.ntt();
            f.dot_assign(&g);
            f.intt();
            f[..size].iter_mut().for_each(|f| *f = ModInt::zero());
            f.ntt();
            f.dot_assign(&g);
            f.intt();
            for (b, g) in b[size..].iter_mut().zip(&f[size..]) {
                *b = *b - *g;
            }
            size *= 2;
        }
        b
    }
    fn log(&self, n: usize) -> Vec<Self::Item> {
        assert!(self.get(0).map_or(false, |p| p.get() == 1));
        let mut b = self.derivative().multiply(&self.inverse(n));
        b.truncate(n - 1);
        let mut b = b.integral();
        b.resize(n, ModInt::zero());
        b
    }
    fn exp(&self, n: usize) -> Vec<Self::Item> {
        assert!(self.get(0).map_or(true, |a| a.is_zero()));
        assert!(n <= T::order());
        let mut b = vec![ModInt::one()];
        let mut size = 1;
        while size < n {
            size <<= 1;
            let f = b.log(size);
            let g = self[..self.len().min(size)].sub(&f);
            b = b.multiply(&g).add(&b);
            b.truncate(size);
        }
        b.truncate(n);
        b.resize(n, ModInt::zero());
        b
    }
}

// test
//  yuki907: https://yukicoder.me/submissions/712523
//  hhkb2020: https://atcoder.jp/contests/hhkb2020/submissions/26997806
//
// ---------- begin recurse ----------
// reference
// https://twitter.com/noshi91/status/1393952665566994434
// https://twitter.com/shino16_cp/status/1393933468082397190
pub fn recurse<A, R, F>(f: F) -> impl Fn(A) -> R
where
    F: Fn(&dyn Fn(A) -> R, A) -> R,
{
    fn call<A, R, F>(f: &F, a: A) -> R
    where
        F: Fn(&dyn Fn(A) -> R, A) -> R,
    {
        f(&|a| call(f, a), a)
    }
    move |a| call(&f, a)
}
// ---------- end recurse ----------
0