結果
問題 | No.2483 Yet Another Increasing XOR Problem |
ユーザー |
👑 |
提出日時 | 2023-09-24 09:33:29 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 14 ms / 2,000 ms |
コード長 | 38,825 bytes |
コンパイル時間 | 12,534 ms |
コンパイル使用メモリ | 289,660 KB |
最終ジャッジ日時 | 2025-02-17 02:05:03 |
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 23 |
ソースコード
#ifdef DEBUG#define _GLIBCXX_DEBUG#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )#define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl#define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl#define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl#define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl#define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl#define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl#define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX )); assert( ( MIN ) <= A && A <= ( MAX ) )#define AUTO_CHECK bool auto_checked = true; AutoCheck( auto_checked ); if( auto_checked ){ return 0; };#else#pragma GCC optimize ( "O3" )#pragma GCC optimize ( "unroll-loops" )#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )#define CERR( ... )#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << "\n"#define CERR_A( A , N )#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << "\n"#define CERR_ITR( A )#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << "\n"#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )#define AUTO_CHECK#endif#include <bits/stdc++.h>using namespace std;using uint = unsigned int;using ll = long long;using ull = unsigned long long;using ld = long double;using lld = __float128;// #define RANDOM_TEST#if defined( DEBUG ) && defined( RANDOM_TEST )ll GetRand( const ll& Rand_min , const ll& Rand_max );#define SET_ASSERT( A , MIN , MAX ) CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) )#define RETURN( ANSWER ) if( ( ANSWER ) == guchoku ){ CERR( ANSWER , "==" , guchoku ); goto END_MAIN; } else { CERR( ANSWER , "!=" , guchoku ); QUIT; }#else#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )#define RETURN( ANSWER ) COUT( ANSWER ); QUIT#endif#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )#define TYPE_OF( VAR ) decay_t<decltype( VAR )>#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE#define CIN( LL , ... ) LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )#define CIN_A( LL , A , N ) LL A[N]; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; }#define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )#define GETLINE( ... ) GETLINE_SEPARATE( " " , ... )#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR =ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR =++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS#define QUIT goto END_MAIN#define TEST_CASE_NUM( BOUND ) DEXPR( int , bound_T , BOUND , min( BOUND , 100 ) ); int T = 1; if constexpr( bound_T > 1 ){ SET_ASSERT( T , 1 ,bound_T ); }#define START_MAIN REPEAT( T ){ { if constexpr( bound_T > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_T , ":" ); }#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )#define FINISH_MAIN QUIT; } END_MAIN: CERR( "" ); }// 入出力用関数template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg ,ARGS&... args ) { return VariadicCin( is >> arg , args... ); }template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , constchar& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg& arg ) { return os<< arg; }template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); }// 算術用関数template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }inline ll MIN( const ll& a , const ll& b ){ return min( a , b ); }inline ull MIN( const ull& a , const ull& b ){ return min( a , b ); }inline ll MAX( const ll& a , const ll& b ){ return max( a , b ); }inline ull MAX( const ull& a , const ull& b ){ return max( a , b ); }#define POWER( ANSWER , ARGUMENT , EXPONENT ) \static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \{ \TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \} \ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ll ANSWER{ 1 }; \{ \ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \} \ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \static ll ANSWER[CONSTEXPR_LENGTH]; \static ll ANSWER_INV[CONSTEXPR_LENGTH]; \static ll INVERSE[CONSTEXPR_LENGTH]; \{ \ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \FOREQ( i , 1 , MAX_INDEX ){ \ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \} \ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \FOREQ( i , 2 , MAX_INDEX ){ \ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (MODULO ) ) ) %= ( MODULO ); \} \} \// 二分探索テンプレート// EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= TARGETの整数解を格納。#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \ll ANSWER = MINIMUM; \if( MINIMUM <= MAXIMUM ){ \ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \CERR( "二分探索中: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" <<TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \} else { \VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \} \ANSWER = UPDATE_ANSWER; \} \CERR( "二分探索終了: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << (EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) << TARGET ); \if( EXPRESSION DESIRED_INEQUALITY TARGET ){ \CERR( "二分探索成功" ); \} else { \CERR( "二分探索失敗" ); \ANSWER = MAXIMUM + 1; \} \} else { \CERR( "二分探索失敗: " << MINIMUM << ">" << MAXIMUM ); \ANSWER = MAXIMUM + 1; \} \// 単調増加の時にEXPRESSION >= TARGETの最小解を格納。#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調増加の時にEXPRESSION <= TARGETの最大解を格納。#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調減少の時にEXPRESSION >= TARGETの最大解を格納。#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調減少の時にEXPRESSION <= TARGETの最小解を格納。#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end;} auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }// t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; }auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }// t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); }// tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); }// データ構造用関数template <typename T> inline T add( const T& t0 , const T& t1 ) { return t0 + t1; }template <typename T> inline T xor_add( const T& t0 , const T& t1 ){ return t0 ^ t1; }template <typename T> inline T multiply( const T& t0 , const T& t1 ) { return t0 * t1; }template <typename T> inline const T& zero() { static const T z = 0; return z; }template <typename T> inline const T& one() { static const T o = 1; return o; }\template <typename T> inline T add_inv( const T& t ) { return -t; }template <typename T> inline T id( const T& v ) { return v; }// グリッド問題用関数int H , W , H_minus , W_minus , HW;inline pair<int,int> EnumHW( const int& v ) { return { v / W , v % W }; }inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; }const string direction[4] = {"U","R","D","L"};// (i,j)->(k,h)の方向番号を取得inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);}// v->wの方向番号を取得inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);}// 方向番号の反転U<->D、R<->Linline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;}// デバッグ用関数#ifdef DEBUGinline void AlertAbort( int n ) { CERR("abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }void AutoCheck( bool& auto_checked );#endif// 圧縮用#define TE template#define TY typename#define US using#define ST static#define IN inline#define CL class#define PU public#define OP operator#define CE constexpr#define CO const#define NE noexcept#define RE return#define WH while#define VO void#define VE vector#define LI list#define BE begin#define EN end#define SZ size#define MO move#define TH this#define CRI CO int&#define CRUI CO uint&#define CRL CO ll&// VVV ライブラリは以下に挿入する。CEXPR(uint,P,998244353);TE <uint M,TY INT> CE INT& RS(INT& n)NE{RE n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n %= M;}TE <uint M> CE uint& RS(uint& n)NE{RE n %= M;}TE <uint M> CE ull& RS(ull& n)NE{RE n %= M;}TE <TY INT> CE INT& RSP(INT& n)NE{CE CO uint trunc = (1 << 23)- 1;INT n_u = n >> 23;n&= trunc;INT n_uq = (n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;}TE <> CE ull& RS<P,ull>(ull& n)NE{CE COull Pull = P;CE CO ull Pull2 = (Pull - 1)* (Pull - 1);RE RSP(n > Pull2?n -= Pull2:n);}TE <uint M,TY INT> CE INT RS(INT&& n)NE{RE MO(RS<M>(n));}TE<uint M,TY INT> CE INT RS(CO INT& n)NE{RE RS<M>(INT(n));}#define SFINAE_FOR_MOD(DEFAULT)TY T,enable_if_t<is_constructible<uint,decay_t<T> >::value>* DEFAULT#define DC_OF_CM_FOR_MOD(FUNC)IN bool OP FUNC(CO Mod<M>& n)CO NE#define DC_OF_AR_FOR_MOD(FUNC)IN Mod<M> OP FUNC(CO Mod<M>& n)CO NE;TE <SFINAE_FOR_MOD(= nullptr)> IN Mod<M> OP FUNC(T&& n)CO NE;#define DF_OF_CM_FOR_MOD(FUNC)TE <uint M> IN bool Mod<M>::OP FUNC(CO Mod<M>& n)CO NE{RE m_n FUNC n.m_n;}#define DF_OF_AR_FOR_MOD(FUNC,FORMULA)TE <uint M> IN Mod<M> Mod<M>::OP FUNC(CO Mod<M>& n)CO NE{RE MO(Mod<M>(*TH)FUNC ## = n);}TE <uint M> TE<SFINAE_FOR_MOD()> IN Mod<M> Mod<M>::OP FUNC(T&& n)CO NE{RE FORMULA;}TE <uint M,SFINAE_FOR_MOD(= nullptr)> IN Mod<M> OP FUNC(T&& n0,CO Mod<M>& n1)NE{RE MO(Mod<M>(forward<T>(n0))FUNC ## = n1);}TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod(CO T&n)NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod(T& n)NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod(T&& n)NE;CE Mod<M>& OP=(CO Mod<M>& n)NE;CE Mod<M>& OP=(Mod<M>&& n)NE;CE Mod<M>& OP+=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(CO Mod<M>& n);CEMod<M>& OP<<=(int n)NE;CE Mod<M>& OP>>=(int n)NE;CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+);DC_OF_AR_FOR_MOD(-);DC_OF_AR_FOR_MOD(*);DC_OF_AR_FOR_MOD(/);CE Mod<M> OP<<(int n)CO NE;CE Mod<M> OP>>(int n)CO NE;CE Mod<M> OP-()CO NE;CE Mod<M>& SignInvert()NE;CE Mod<M>& Double()NE;CE Mod<M>& Halve()NE;IN Mod<M>& Invert();TE <TY T> CE Mod<M>& PositivePW(T&& EX)NE;TE <TY T> CE Mod<M>&NonNegativePW(T&& EX)NE;TE <TY T> CE Mod<M>& PW(T&& EX);CE VO swap(Mod<M>& n)NE;CE CRUI RP()CO NE;ST CE Mod<M> DeRP(CRUI n)NE;ST CE uint&Normalise(uint& n)NE;ST IN CO Mod<M>& Inverse(CRUI n)NE;ST IN CO Mod<M>& Factorial(CRUI n)NE;ST IN CO Mod<M>& FactorialInverse(CRUI n)NE;ST INMod<M> Combination(CRUI n,CRUI i)NE;ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one()NE;TE <TY T> CE Mod<M>& Ref(T&& n)NE;};#define SFINAE_FOR_MN(DEFAULT)TY T,enable_if_t<is_constructible<Mod<M>,decay_t<T> >::value>* DEFAULT#define DC_OF_AR_FOR_MN(FUNC)IN MN<M> OP FUNC(CO MN<M>& n)CO NE;TE <SFINAE_FOR_MOD(= nullptr)> IN MN<M> OP FUNC(T&& n)CO NE;#define DF_OF_CM_FOR_MN(FUNC)TE <uint M> IN bool MN<M>::OP FUNC(CO MN<M>& n)CO NE{RE m_n FUNC n.m_n;}#define DF_OF_AR_FOR_MN(FUNC,FORMULA)TE <uint M> IN MN<M> MN<M>::OP FUNC(CO MN<M>& n)CO NE{RE MO(MN<M>(*TH)FUNC ## = n);}TE <uint M> TE<SFINAE_FOR_MOD()> IN MN<M> MN<M>::OP FUNC(T&& n)CO NE{RE FORMULA;}TE <uint M,SFINAE_FOR_MOD(= nullptr)> IN MN<M> OP FUNC(T&& n0,CO MN<M>& n1)NE{RE MO(MN<M>(forward<T>(n0))FUNC ## = n1);}TE <uint M>CL MN:PU Mod<M>{PU:CE MN()NE;CE MN(CO MN<M>& n)NE;CE MN(MN<M>& n)NE;CE MN(MN<M>&& n)NE;TE <SFINAE_FOR_MN(= nullptr)> CE MN(CO T& n)NE;TE<SFINAE_FOR_MN(= nullptr)> CE MN(T&& n)NE;CE MN<M>& OP=(CO MN<M>& n)NE;CE MN<M>& OP=(MN<M>&& n)NE;CE MN<M>& OP+=(CO MN<M>& n)NE;CE MN<M>& OP-=(COMN<M>& n)NE;CE MN<M>& OP*=(CO MN<M>& n)NE;IN MN<M>& OP/=(CO MN<M>& n);CE MN<M>& OP<<=(int n)NE;CE MN<M>& OP>>=(int n)NE;CE MN<M>& OP++()NE;CE MN<M> OP++(int)NE;CE MN<M>& OP--()NE;CE MN<M> OP--(int)NE;DC_OF_AR_FOR_MN(+);DC_OF_AR_FOR_MN(-);DC_OF_AR_FOR_MN(*);DC_OF_AR_FOR_MN(/);CE MN<M> OP<<(int n)CO NE;CE MN<M> OP>>(int n)CO NE;CE MN<M> OP-()CO NE;CE MN<M>& SignInvert()NE;CE MN<M>& Double()NE;CE MN<M>& Halve()NE;CE MN<M>& Invert();TE <TY T> CE MN<M>& PositivePW(T&& EX)NE;TE <TY T> CE MN<M>& NonNegativePW(T&& EX)NE;TE <TY T> CE MN<M>& PW(T&& EX);CE uint RP()CO NE;CE Mod<M> Reduce()CO NE;ST CE MN<M> DeRP(CRUI n)NE;ST IN CO MN<M>& Formise(CRUI n)NE;ST IN CO MN<M>& Inverse(CRUI n)NE;ST IN CO MN<M>& Factorial(CRUI n)NE;ST IN CO MN<M>& FactorialInverse(CRUI n)NE;ST IN MN<M> Combination(CRUI n,CRUI i)NE;ST IN CO MN<M>& zero()NE;ST IN CO MN<M>& one()NE;ST CEuint Form(CRUI n)NE;ST CE ull& Reduction(ull& n)NE;ST CE ull& ReducedMU(ull& n,CRUI m)NE;ST CE uint MU(CRUI n0,CRUI n1)NE;ST CE uintBaseSquareTruncation(uint& n)NE;TE <TY T> CE MN<M>& Ref(T&& n)NE;};TE <uint M> CE MN<M> Twice(CO MN<M>& n)NE;TE <uint M> CE MN<M> Half(CO MN<M>&n)NE;TE <uint M> CE MN<M> Inverse(CO MN<M>& n);TE <uint M,TY T> CE MN<M> PW(MN<M> n,T EX);TE <TY T> CE MN<2> PW(CO MN<2>& n,CO T& p);TE <TY T> CET Square(CO T& t);TE <> CE MN<2> Square<MN<2> >(CO MN<2>& t);TE <uint M> CE VO swap(MN<M>& n0,MN<M>& n1)NE;TE <uint M> IN string to_string(CO MN<M>& n)NE;TE<uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO MN<M>& n);TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO bool g_even = ((M & 1)== 0);ST CE CO uint g_memory_bound = 1000000;ST CE CO uintg_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE ull MNBasePW(ull&& EX)NE;ST CE uint g_M_minus = M - 1;ST CE uint g_M_minus_2 = M - 2;STCE uint g_M_minus_2_neg = 2 - M;ST CE CO int g_MN_digit = 32;ST CE CO ull g_MN_base = ull(1)<< g_MN_digit;ST CE CO uint g_MN_base_minus = uint(g_MN_base - 1);ST CE CO uint g_MN_digit_half = (g_MN_digit + 1)>> 1;ST CE CO uint g_MN_base_sqrt_minus = (1 << g_MN_digit_half)- 1;ST CE CO uintg_MN_M_neg_inverse = uint((g_MN_base - MNBasePW((ull(1)<< (g_MN_digit - 1))- 1))& g_MN_base_minus);ST CE CO uint g_MN_base_mod = uint(g_MN_base %M);ST CE CO uint g_MN_base_square_mod = uint(((g_MN_base % M)* (g_MN_base % M))% M);};TE <uint M> CE ull COantsForMod<M>::MNBasePW(ull&& EX)NE{ull prod = 1;ull PW = M;WH(EX != 0){(EX & 1)== 1?(prod *= PW)&= g_MN_base_minus:prod;EX >>= 1;(PW *= PW)&= g_MN_base_minus;}RE prod;}US MP = Mod<P>;US MNP = MN<P>;TE <uint M> CE uint MN<M>::Form(CRUI n)NE{ull n_copy = n;RE uint(MO(Reduction(n_copy *= COantsForMod<M>::g_MN_base_square_mod)));}TE <uint M> CE ull& MN<M>::Reduction(ull& n)NE{ull n_sub = n & COantsForMod<M>::g_MN_base_minus;RE ((n += ((n_sub *=COantsForMod<M>::g_MN_M_neg_inverse)&= COantsForMod<M>::g_MN_base_minus)*= M)>>= COantsForMod<M>::g_MN_digit)< M?n:n -= M;}TE <uint M> CE ull& MN<M>::ReducedMU(ull& n,CRUI m)NE{RE Reduction(n *= m);}TE <uint M> CE uint MN<M>::MU(CRUI n0,CRUI n1)NE{ull n0_copy = n0;RE uint(MO(ReducedMU(ReducedMU(n0_copy,n1),COantsForMod<M>::g_MN_base_square_mod)));}TE <uint M> CE uint MN<M>::BaseSquareTruncation(uint& n)NE{CO uint n_u = n >>COantsForMod<M>::g_MN_digit_half;n &= COantsForMod<M>::g_MN_base_sqrt_minus;RE n_u;}TE <uint M> CE MN<M>::MN()NE:Mod<M>(){static_assert(!COantsForMod<M>::g_even);}TE <uint M> CE MN<M>::MN(CO MN<M>& n)NE:Mod<M>(n){}TE <uint M> CE MN<M>::MN(MN<M>& n)NE:Mod<M>(n){}TE <uint M> CE MN<M>::MN(MN<M>&& n)NE:Mod<M>(MO(n)){}TE <uint M> TE <SFINAE_FOR_MN()> CE MN<M>::MN(CO T& n)NE:Mod<M>(n){static_assert(! COantsForMod<M>::g_even);Mod<M>::m_n = Form(Mod<M>::m_n);}TE <uint M> TE <SFINAE_FOR_MN()> CE MN<M>::MN(T&& n)NE:Mod<M>(forward<T>(n)){static_assert(! COantsForMod<M>::g_even);Mod<M>::m_n = Form(Mod<M>::m_n);}TE <uint M> CE MN<M>& MN<M>::OP=(CO MN<M>& n)NE{RE Ref(Mod<M>::OP=(n));}TE <uint M> CE MN<M>& MN<M>::OP=(MN<M>&& n)NE{RE Ref(Mod<M>::OP=(MO(n)));}TE <uint M> CE MN<M>& MN<M>::OP+=(CO MN<M>& n)NE{RE Ref(Mod<M>::OP+=(n));}TE <uint M> CE MN<M>&MN<M>::OP-=(CO MN<M>& n)NE{RE Ref(Mod<M>::OP-=(n));}TE <uint M> CE MN<M>& MN<M>::OP*=(CO MN<M>& n)NE{ull m_n_copy = Mod<M>::m_n;RE Ref(Mod<M>::m_n = MO(ReducedMU(m_n_copy,n.m_n)));}TE <uint M> IN MN<M>& MN<M>::OP/=(CO MN<M>& n){RE OP*=(MN<M>(n).Invert());}TE <uint M> CE MN<M>& MN<M>::OP<<=(int n)NE{RE Ref(Mod<M>::OP<<=(n));}TE <uint M> CE MN<M>& MN<M>::OP>>=(int n)NE{RE Ref(Mod<M>::OP>>=(n));}TE <uint M> CE MN<M>& MN<M>::OP++()NE{RE Ref(Mod<M>::Normalise(Mod<M>::m_n += COantsForMod<M>::g_MN_base_mod));}TE <uint M> CE MN<M> MN<M>::OP++(int)NE{MN<M> n{*TH};OP++();RE n;}TE <uint M> CE MN<M>& MN<M>::OP--()NE{RE Ref(Mod<M>::m_n < COantsForMod<M>::g_MN_base_mod?((Mod<M>::m_n += M)-= COantsForMod<M>::g_MN_base_mod):Mod<M>::m_n -= COantsForMod<M>::g_MN_base_mod);}TE <uint M> CE MN<M> MN<M>::OP--(int)NE{MN<M> n{*TH};OP--();RE n;}DF_OF_AR_FOR_MN(+,MN<M>(forward<T>(n))+= *TH);DF_OF_AR_FOR_MN(-,MN<M>(forward<T>(n)).SignInvert()+= *TH);DF_OF_AR_FOR_MN(*,MN<M>(forward<T>(n))*= *TH);DF_OF_AR_FOR_MN(/,MN<M>(forward<T>(n)).Invert()*= *TH);TE <uint M> CE MN<M> MN<M>::OP<<(int n)CO NE{RE MO(MN<M>(*TH)<<= n);}TE <uint M> CE MN<M> MN<M>::OP>>(intn)CO NE{RE MO(MN<M>(*TH)>>= n);}TE <uint M> CE MN<M> MN<M>::OP-()CO NE{RE MO(MN<M>(*TH).SignInvert());}TE <uint M> CE MN<M>& MN<M>::SignInvert()NE{RE Ref(Mod<M>::m_n > 0?Mod<M>::m_n = M - Mod<M>::m_n:Mod<M>::m_n);}TE <uint M> CE MN<M>& MN<M>::Double()NE{RE Ref(Mod<M>::Double());}TE<uint M> CE MN<M>& MN<M>::Halve()NE{RE Ref(Mod<M>::Halve());}TE <uint M> CE MN<M>& MN<M>::Invert(){assert(Mod<M>::m_n > 0);RE PositivePW(uint(COantsForMod<M>::g_M_minus_2));}TE <uint M> TE <TY T> CE MN<M>& MN<M>::PositivePW(T&& EX)NE{MN<M> PW{*TH};(--EX)%= COantsForMod<M>::g_M_minus_2;WH(EX != 0){(EX & 1)== 1?OP*=(PW):*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <uint M> TE <TY T> CE MN<M>& MN<M>::NonNegativePW(T&& EX)NE{RE EX == 0?Ref(Mod<M>::m_n = COantsForMod<M>::g_MN_base_mod):PositivePW(forward<T>(EX));}TE <uint M> TE <TY T> CE MN<M>& MN<M>::PW(T&& EX){bool neg = EX < 0;assert(!(neg && Mod<M>::m_n == 0));RE neg?PositivePW(forward<T>(EX *= COantsForMod<M>::g_M_minus_2_neg)):NonNegativePW(forward<T>(EX));}TE <uintM> CE uint MN<M>::RP()CO NE{ull m_n_copy = Mod<M>::m_n;RE MO(Reduction(m_n_copy));}TE <uint M> CE Mod<M> MN<M>::Reduce()CO NE{ull m_n_copy = Mod<M>::m_n;RE Mod<M>::DeRP(MO(Reduction(m_n_copy)));}TE <uint M> CE MN<M> MN<M>::DeRP(CRUI n)NE{RE MN<M>(Mod<M>::DeRP(n));}TE <uint M> IN CO MN<M>&MN<M>::Formise(CRUI n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] =DeRP(LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN CO MN<M>& MN<M>::Inverse(CRUI n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN<M>(Mod<M>::Inverse(LE_curr));LE_curr++;}RE memory[n];}TE <uint M> IN CO MN<M>& MN<M>::Factorial(CRUI n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;ST MN<M> val_curr{one()};ST MN<M>val_last{one()};WH(LE_curr <= n){memory[LE_curr++] = val_curr *= ++val_last;}RE memory[n];}TE <uint M> IN CO MN<M>& MN<M>::FactorialInverse(CRUIn)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;ST MN<M> val_curr{one()};ST MN<M> val_last{one()};WH(LE_curr <= n){memory[LE_curr] = val_curr *= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN MN<M> MN<M>::Combination(CRUI n,CRUI i)NE{RE i <= n?Factorial(n)*FactorialInverse(i)*FactorialInverse(n - i):zero();}TE <uint M> IN CO MN<M>& MN<M>::zero()NE{ST CE CO MN<M> z{};RE z;}TE <uint M> IN CO MN<M>& MN<M>::one()NE{ST CE CO MN<M> o{DeRP(1)};RE o;}TE <uint M> TE <TY T> CE MN<M>& MN<M>::Ref(T&& n)NE{RE *TH;}TE <uint M>CE MN<M> Twice(CO MN<M>& n)NE{RE MO(MN<M>(n).Double());}TE <uint M> CE MN<M> Half(CO MN<M>& n)NE{RE MO(MN<M>(n).Halve());}TE <uint M> CE MN<M>Inverse(CO MN<M>& n){RE MO(MN<M>(n).Invert());}TE <uint M,TY T> CE MN<M> PW(MN<M> n,T EX){RE MO(n.PW(EX));}TE <uint M> CE VO swap(MN<M>& n0,MN<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO MN<M>& n)NE{RE to_string(n.RP())+ " + MZ";}TE<uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO MN<M>& n){RE os << n.RP();}TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>& n)NE:m_n(n.m_n){}TE<uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n)){}TE <uint M> TE <SFINAE_FOR_MOD()> CE Mod<M>::Mod(CO T& n)NE:m_n(RS<M>(n)){}TE <uint M> TE<SFINAE_FOR_MOD()> CE Mod<M>::Mod(T& n)NE:m_n(RS<M>(decay_t<T>(n))){}TE <uint M> TE <SFINAE_FOR_MOD()> CE Mod<M>::Mod(T&& n)NE:m_n(RS<M>(forward<T>(n))){}TE <uint M> CE Mod<M>& Mod<M>::OP=(CO Mod<M>& n)NE{RE Ref(m_n = n.m_n);}TE <uint M> CE Mod<M>& Mod<M>::OP=(Mod<M>&& n)NE{RE Ref(m_n =MO(n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{RE Ref(Normalise(m_n += n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP-=(CO Mod<M>& n)NE{RE Ref(m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n);}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{RE Ref(m_n = COantsForMod<M>::g_even?RS<M>(ull(m_n)* n.m_n):MN<M>::MU(m_n,n.m_n));}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;RE Ref(m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy)));}TE <uint M> IN Mod<M>& Mod<M>::OP/=(CO Mod<M>& n){RE OP*=(Mod<M>(n).Invert());}TE <uint M> CE Mod<M>& Mod<M>::OP<<=(int n)NE{WH(n-- > 0){Normalise(m_n <<= 1);}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP>>=(int n)NE{WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>=1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{RE Ref(m_n < COantsForMod<M>::g_M_minus?++m_n:m_n = 0);}TE <uint M> CE Mod<M> Mod<M>::OP++(int)NE{Mod<M> n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{RE Ref(m_n == 0?m_n = COantsForMod<M>::g_M_minus:--m_n);}TE <uint M> CEMod<M> Mod<M>::OP--(int)NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,Mod<M>(forward<T>(n))+= *TH);DF_OF_AR_FOR_MOD(-,Mod<M>(forward<T>(n)).SignInvert()+= *TH);DF_OF_AR_FOR_MOD(*,Mod<M>(forward<T>(n))*= *TH);DF_OF_AR_FOR_MOD(/,Mod<M>(forward<T>(n)).Invert()*= *TH);TE <uint M> CE Mod<M> Mod<M>::OP<<(int n)CO NE{RE MO(Mod<M>(*TH)<<= n);}TE <uint M> CE Mod<M> Mod<M>::OP>>(int n)CO NE{RE MO(Mod<M>(*TH)>>= n);}TE <uint M> CE Mod<M> Mod<M>::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{RE Ref(m_n > 0?m_n = M - m_n:m_n);}TE <uint M> CEMod<M>& Mod<M>::Double()NE{RE Ref(Normalise(m_n <<= 1));}TE <uint M> CE Mod<M>& Mod<M>::Halve()NE{RE Ref(((m_n & 1)== 0?m_n:m_n += M)>>= 1);}TE<uint M> IN Mod<M>& Mod<M>::Invert(){assert(m_n > 0);uint m_n_neg;RE m_n < COantsForMod<M>::g_memory_LE?Ref(m_n = Inverse(m_n).m_n):(m_n_neg = M- m_n < COantsForMod<M>::g_memory_LE)?Ref(m_n = M - Inverse(m_n_neg).m_n):PositivePW(uint(COantsForMod<M>::g_M_minus_2));}TE <> IN Mod<2>& Mod<2>::Invert(){assert(m_n > 0);RE *TH;}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::PositivePW(T&& EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?OP*=(PW):*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <> TE <TY T> CE Mod<2>& Mod<2>::PositivePW(T&& EX)NE{RE *TH;}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::NonNegativePW(T&& EX)NE{RE EX == 0?Ref(m_n = 1):Ref(PositivePW(forward<T>(EX)));}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::PW(T&& EX){bool neg= EX < 0;assert(!(neg && m_n == 0));neg?EX *= COantsForMod<M>::g_M_minus_2_neg:EX;RE m_n == 0?*TH:(EX %= COantsForMod<M>::g_M_minus)== 0?Ref(m_n= 1):PositivePW(forward<T>(EX));}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CRUI n)NE{ST Mod<M> memory[COantsForMod<M>::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - MN<M>::MU(memory[M % LE_curr].m_n,M / LE_curr);LE_curr++;}RE memory[n];}TE<uint M> IN CO Mod<M>& Mod<M>::Factorial(CRUI n)NE{ST Mod<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;WH(LE_curr<= n){memory[LE_curr] = MN<M>::Factorial(LE_curr).Reduce();LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CRUI n)NE{ST Mod<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN<M>::FactorialInverse(LE_curr).Reduce();LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CRUI n,CRUI i)NE{RE MN<M>::Combination(n,i).Reduce();}TE<uint M> CE VO Mod<M>::swap(Mod<M>& n)NE{std::swap(m_n,n.m_n);}TE <uint M> CE CRUI Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M>::DeRP(CRUI n)NE{Mod<M> n_copy{};n_copy.m_n = n;RE n_copy;}TE <uint M> CE uint& Mod<M>::Normalise(uint& n)NE{RE n < M?n:n -= M;}TE <uint M> IN CO Mod<M>& Mod<M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M> IN CO Mod<M>& Mod<M>::one()NE{ST CE CO Mod<M> o{DeRP(1)};RE o;}TE <uint M> TE <TY T> CEMod<M>& Mod<M>::Ref(T&& n)NE{RE *TH;}TE <uint M> CE Mod<M> Twice(CO Mod<M>& n)NE{RE MO(Mod<M>(n).Double());}TE <uint M> CE Mod<M> Half(CO Mod<M>&n)NE{RE MO(Mod<M>(n).Halve());}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M> CE Mod<M> Inverse_COrexpr(CRUIn)NE{RE MO(Mod<M>::DeRP(RS<M>(n)).NonNegativePW(M - 2));}TE <uint M,TY T> CE Mod<M> PW(Mod<M> n,T EX){RE MO(n.PW(EX));}TE <TY T>CE Mod<2> PW(Mod<2> n,const T& p){RE p == 0?Mod<2>::one():move(n);}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO Mod<M>& n)NE{RE to_string(n.RP())+ " + MZ";}TE<uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO Mod<M>& n){RE os << n.RP();}// AAA ライブラリは以上に挿入する。// データ構造使用畤のNの上限// inline CEXPR( int , bound_N , 10 );inline DEXPR( int , bound_N , 100000 , 100 ); // 0が5個// inline CEXPR( int , bound_N , 1000000000 ); // 0が9個// inline CEXPR( ll , bound_N , 1000000000000000000 ); // 0が18個// データ構造や壁配列使用畤のH,Wの上限inline DEXPR( int , bound_H , 1000 , 20 );// inline DEXPR( int , bound_H , 100000 , 10 ); // 0が5個// inline CEXPR( int , bound_H , 1000000000 ); // 0が9個inline CEXPR( int , bound_W , bound_H );static_assert( ll( bound_H ) * bound_W < ll( 1 ) << 31 );inline CEXPR( int , bound_HW , bound_H * bound_W );// CEXPR( int , bound_HW , 100000 ); // 0が5個// CEXPR( int , bound_HW , 1000000 ); // 0が6個inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[bound_HW] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v);}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back(v);}}}}inline void SetEdgeOnGrid( const string& Si , const int& i , list<pair<int,ll> > ( &e )[bound_HW] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){const int v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}}inline void SetWallOnGrid( const string& Si , const int& i , bool ( &non_wall )[bound_H+1][bound_W+1] , const char& walkable = '.' , const char&unwalkable = '#' ){bool(&non_wall_i)[bound_W+1]=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}}// using path_type = int;// // using path_type = pair<int,ll>;// CEXPR( int , bound_E , bound_M ); // bound_Mのデフォルト値は10^5。// // CEXPR( int , bound_E , bound_HW ); // bound_HWのデフォルト値は10^6。// list<path_type> e[bound_E] = {};// list<path_type> E( const int& i )// {// list<path_type> answer{};// list<path_type> answer = e[i];// // 入力によらない処理// return answer;// }// ライブラリをここに挿入しない。// O(M^4)ll Guchoku( const int& M ){int power = 1;while( power < M ){power <<= 1;}ll answer = 0;ll dp[power+1][power][power] = {};FOR( i , 0 , M ){answer += dp[1][i][i] = 1;}FOREQ( L , 2 , power ){FOR( i , 0 , power ){FOR( j , L - 2 , power ){FOR( k , j + 1 , power ){( j ^ k ) < M ? dp[L][j^k][k] += dp[L-1][i][j] : 0;}}}FOR( i , 0 , power ){FOR( j , L - 1 , power ){answer += dp[L][i][j];}}}// M <= powerかつanswer <= 2^power - 1// M == powerの時、answer == 2^M - 1return answer;}// O(M^2)ll Guchoku2( const int& M ){int power = 1;while( power * 2 <= M ){power <<= 1;}ll power2[power+1] = { 1 };FOREQ( i , 1 , power ){power2[i] = power2[i-1] * 2;}ll answer = ( power2[power] - power2[0] ) + ( power2[power * 2 - power] - power2[power * 2 - M] );FOR( b0 , 0 , power ){ll temp = 0;FOR( a1 , power , M ){int b1 = b0 ^ a1;int diff = power * 2 - ( b1 + 1 );temp += power2[diff];}answer += temp *= power2[b0];}return answer;}// O(M^2)ll Guchoku3( const int& M ){int power = 1;while( power * 2 <= M ){power <<= 1;}ll power2[power*2+1] = { 1 };FOREQ( i , 1 , power*2 ){power2[i] = power2[i-1] * 2;}ll answer = ( power2[power] - power2[0] ) + ( power2[power * 2 - power] - power2[power * 2 - M] );FOR( a1 , power , M ){FOR( b0 , 0 , power ){int b1 = b0 ^ a1;answer += power2[power * 2 - ( b1 - b0 + 1 )];}}return answer;}// O(M^2)MP Guchoku4( const int& M ){int power = 1;while( power * 2 <= M ){power <<= 1;}MP power2[power*2+1] = { 1 };FOREQ( i , 1 , power*2 ){power2[i] = power2[i-1] * 2;}MP answer = ( power2[power] - power2[0] ) + ( power2[power * 2 - power] - power2[power * 2 - M] );int M_minus = M - power;FOR( a1_minus , 0 , M_minus ){FOR( b0 , 0 , power ){answer += power2[ ( power * 2 - power - 1 ) - ( ( b0 ^ a1_minus ) - b0 ) ];}}return answer;}// O(M^2 log M)MP Guchoku5( const int& M ){int power = 1;int D = 0;while( power * 2 <= M ){D++;power <<= 1;}MP power2[power*2+1] = { 1 };FOREQ( i , 1 , power*2 ){power2[i] = power2[i-1] * 2;}MP answer = ( power2[power] - power2[0] ) + ( power2[power * 2 - power] - power2[power * 2 - M] );int M_minus = M - power;FOR( a1_minus , 0 , M_minus ){FOR( b0 , 0 , power ){MP temp = power2[power * 2 - power - 1];FOR( d , 0 , D ){if( ( ( a1_minus >> d ) & 1 ) == 1 ){( ( b0 >> d ) & 1 ) == 0 ? temp /= power2[1 << d] : temp *= power2[1 << d];}}answer += temp;}}return answer;}void Experiment(){FOR( M , 1 , 10 ){cout << Guchoku( M ) << " \n"[M==9];}FOR( M , 1 , 10 ){cout << Guchoku2( M ) << " \n"[M==9];}FOR( M , 1 , 10 ){cout << Guchoku3( M ) << " \n"[M==9];}FOR( M , 1 , 10 ){cout << Guchoku4( M ) << " \n"[M==9];}FOR( M , 1 , 10 ){cout << Guchoku5( M ) << " \n"[M==9];}// 1 3 9 15 55 99 169 255 1407}int main(){UNTIE;AUTO_CHECK;// START_WATCH;TEST_CASE_NUM( 1 );START_MAIN;// Experiment();// DEXPR( ll , bound_M , 1000000000000000000 , 100000 ); // 0が18個CEXPR( ll , bound_M , 1000000000000000000 ); // 0が18個CIN_ASSERT( M , 1 , bound_M );int D = -1;ll power2 = 1;while( power2 <= M ){D++;power2 <<= 1;}ll power = power2 >> 1;constexpr MP two = MP::DeRP( 2 );MP answer = ( PW( two , power ) - 1 ) + ( PW( two , power ) - PW( two , power2 - M ) );ll M_minus = M - power;MP ppower = two + 1 / two;MP full = PW( two , power - 1 );MP less = ( ( M_minus >> 0 ) & 1 ) == 0 ? MP::zero() : full << 1;full *= 2 + ppower;FOR( d , 1 , D ){ppower *= ppower;( ( M_minus >> d ) & 1 ) == 0 ? less <<= 1 : ( less *= ppower - 2 ) += full << 1;full *= ppower;ppower -= 2;}answer += less;// MP guchoku = Guchoku4( M );RETURN( answer );FINISH_MAIN;}