結果
問題 | No.2487 Multiple of M |
ユーザー |
|
提出日時 | 2023-10-01 02:37:13 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 1 ms / 2,000 ms |
コード長 | 6,534 bytes |
コンパイル時間 | 12,431 ms |
コンパイル使用メモリ | 390,156 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-23 20:05:44 |
合計ジャッジ時間 | 14,593 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 53 |
ソースコード
use std::io::Read;fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]pub struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;fn gcd(mut a: i64, mut b: i64) -> i64 {while b != 0 {let r = a % b;a = b;b = r;}a}// https://yukicoder.me/problems/no/2487 (3.5)// 包除原理を使う。f(S) := (0 <= A_i <= M-1, ただし x in S のとき A_x = 0 が確定としたときの値) とする。// m = min U\S としたとき、その m に対する f(S)(-1)^{|S|} の和は (-1)^m(M-1)^{N-1-m}M/x_m である。// ただし x_i は x_0 = M, x_{i+1} = x_i/gcd(x_i, K) で定まる数列である。// ほとんどの x_m の値は等しく、x_m の値がすべて等しいと仮定すれば// \sum_{0 <= m <= N-1} (-1)^m(M-1)^{N-1-m}M は (M-2)^{N-1}M として簡単に計算できる。// よってこれを利用し、x_m の値が定常状態と違うもの全てに対して (-1)^m(M-1)^{N-1-m}M/x_m を計算すれば良い。// なお、S = U のときは min U\S は存在しないので、これも数えなければならない。f(U) = 1 である。// -> (-1)^m(M-1)^{N-1-m} の和は (M-2)^{N-1} ではない。(二項係数がかかっていないので)// (M-1)^{N-1}(1 - (-1/(M-1))^N)/(1 + 1/(M-1)) = ((M-1)^N - (-1)^N) / M// -> 実装由来のコーナーケースとして |x| > n の場合に n 番目以降を見ないのをやり忘れていた。直して AC。fn main() {let n: i64 = get();let m: i64 = get();let k: i64 = get();let mut x = vec![m];let mut c = m;loop {let oldc = c;c = c / gcd(c, k);if oldc == c { break; }x.push(c);}let mut tot = (MInt::new(m - 1).pow(n) - MInt::new(MOD - 1).pow(n)) * MInt::new(c).inv();for i in 0..std::cmp::min(x.len() as i64, n) {let mut num = MInt::new(m - 1).pow(n - 1 - i) * m;if i % 2 != 0 {num = -num;}tot += num * MInt::new(x[i as usize]).inv();tot -= num * MInt::new(c).inv();}if n % 2 != 0 {tot -= 1;} else {tot += 1;}println!("{}", tot);}