結果

問題 No.1846 Good Binary Matrix
ユーザー ゆにぽけゆにぽけ
提出日時 2023-10-06 13:34:37
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 3,786 bytes
コンパイル時間 1,536 ms
コンパイル使用メモリ 129,876 KB
実行使用メモリ 11,292 KB
最終ジャッジ日時 2024-07-26 15:24:12
合計ジャッジ時間 5,485 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 1 ms
6,940 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 1 ms
6,944 KB
testcase_04 AC 1 ms
6,944 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 1 ms
6,940 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 1 ms
6,940 KB
testcase_12 AC 1 ms
6,940 KB
testcase_13 AC 2 ms
6,944 KB
testcase_14 AC 1 ms
6,944 KB
testcase_15 AC 2 ms
6,944 KB
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 AC 244 ms
7,168 KB
testcase_22 AC 259 ms
7,424 KB
testcase_23 AC 2 ms
6,944 KB
testcase_24 AC 2 ms
6,940 KB
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
testcase_30 RE -
testcase_31 RE -
testcase_32 RE -
testcase_33 RE -
testcase_34 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<iostream>
#include<vector>
#include<algorithm>
#include<cstring>
#include<cassert>
#include<cmath>
#include<ctime>
#include<iomanip>
#include<numeric>
#include<stack>
#include<queue>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<bitset>
#include<random>
using namespace std;
template<int m> struct modint
{
	private:
	unsigned int value;
	static constexpr int mod() {return m;}

	public:
	constexpr modint(const long long x = 0) noexcept
	{
		long long y = x;
		if(y < 0 || y >= mod())
		{
			y %= mod();
			if(y < 0) y += mod();
		}
		value = (unsigned int)y;
	}
	constexpr unsigned int val() noexcept {return value;}
	constexpr modint &operator+=(const modint &other) noexcept
	{
		value += other.value;
		if(value >= mod()) value -= mod();
		return *this;
	}
	constexpr modint &operator-=(const modint &other) noexcept
	{
		unsigned int x = value;
		if(x < other.value) x += mod();
		x -= other.value;
		value = x;
		return *this;
	}
	constexpr modint &operator*=(const modint &other) noexcept
	{
		unsigned long long x = value;
		x *= other.value;
		value = (unsigned int) (x % mod());
		return *this;
	}
	constexpr modint &operator/=(const modint &other) noexcept
	{
		return *this *= other.inverse();
	}
	constexpr modint inverse() const noexcept
	{
		assert(value);
		long long a = value,b = mod(),x = 1,y = 0;
		while(b)
		{
			long long q = a/b;
			a -= q*b; swap(a,b);
			x -= q*y; swap(x,y);
		}
		return modint(x);
	}
	constexpr modint power(long long N) const noexcept
	{
		assert(N >= 0);
		modint p = *this,ret = 1;
		while(N)
		{
			if(N & 1) ret *= p;
			p *= p;
			N >>= 1;
		}
		return ret;
	}
	constexpr modint operator+() {return *this;}
	constexpr modint operator-() {return modint() - *this;}
	constexpr modint &operator++(int) noexcept {return *this += 1;}
	constexpr modint &operator--(int) noexcept {return *this -= 1;}
	friend modint operator+(const modint& lhs, const modint& rhs) {return modint(lhs) += rhs;}
	friend modint operator-(const modint& lhs, const modint& rhs) {return modint(lhs) -= rhs;}
	friend modint operator*(const modint& lhs, const modint& rhs) {return modint(lhs) *= rhs;}
	friend modint operator/(const modint& lhs, const modint& rhs) {return modint(lhs) /= rhs;}
	friend ostream &operator<<(ostream &os,const modint &x) {return os << x.value;}
};
//using mint = modint<998244353>;
using mint = modint<1000000007>;
template<class S>
struct combination
{
	vector<S> f,invf;

	combination(int N = 0) : f(1,1),invf(1,1)
	{
		update(N);
	}

	void update(int N)
	{
		if((int)f.size() > N) return;
		int pi = (int)f.size();
		N = max(N,pi*2);

		f.resize(N+1),invf.resize(N+1);

		for(int i = pi;i <= N;i++) f[i] = f[i-1]*i;
		invf[N] = S(1)/f[N];
		for(int i = N-1;i >= pi;i--) invf[i] = invf[i+1]*(i+1);
	}

	S factorial(int N)
	{
		update(N);
		return f[N];
	}

	S invfactorial(int N)
	{
		update(N);
		return invf[N];
	}

	S P(int N,int K)
	{
		assert(0 <= K && K <= N);
		update(N);
		return f[N]*invf[N-K];
	}

	S C(int N,int K)
	{
		assert(0 <= K && K <= N);
		update(N);
		return f[N]*invf[K]*invf[N-K];
	}

	S H(int N,int K)
	{
		if(!N) return K == 0 ? 1:0;
		return C(N+K-1,K);
	}
};
combination<mint> C;
int H,W;
void solve()
{
	cin >> H >> W;

	mint ans = 0;
	/*for(int i = 0;i <= H;i++)for(int j = 0;j <= W;j++)
	{
		int z = i*W + (H-i)*j;
		mint p = mint(2).power(H*W-z)*C.C(H,i)*C.C(W,j);

		if((i+j) & 1) ans -= p;
		else ans += p;
	}*/

	for(int i = 0;i <= H;i++)
	{
		int rem = (H-i)*W;
		mint coef = C.C(H,i);

		mint t = mint(2).power(H-i);
		mint p = coef*mint(2).power(rem)*mint(1-1/t).power(W);
		if(i & 1) ans -= p;
		else ans += p;
	}

	cout << ans << endl;
}
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	int T = 1;
	//cin >> T;
	while(T--) solve();
}
0