結果

問題 No.1846 Good Binary Matrix
ユーザー ゆにぽけゆにぽけ
提出日時 2023-10-06 13:37:33
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
RE  
実行時間 -
コード長 3,792 bytes
コンパイル時間 1,118 ms
コンパイル使用メモリ 124,652 KB
最終ジャッジ日時 2025-02-17 04:37:58
ジャッジサーバーID
(参考情報)
judge4 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 21 RE * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<iostream>
#include<vector>
#include<algorithm>
#include<cstring>
#include<cassert>
#include<cmath>
#include<ctime>
#include<iomanip>
#include<numeric>
#include<stack>
#include<queue>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<bitset>
#include<random>
using namespace std;
template<int m> struct modint
{
private:
unsigned int value;
static constexpr int mod() {return m;}
public:
constexpr modint(const long long x = 0) noexcept
{
long long y = x;
if(y < 0 || y >= mod())
{
y %= mod();
if(y < 0) y += mod();
}
value = (unsigned int)y;
}
constexpr unsigned int val() noexcept {return value;}
constexpr modint &operator+=(const modint &other) noexcept
{
value += other.value;
if(value >= mod()) value -= mod();
return *this;
}
constexpr modint &operator-=(const modint &other) noexcept
{
unsigned int x = value;
if(x < other.value) x += mod();
x -= other.value;
value = x;
return *this;
}
constexpr modint &operator*=(const modint &other) noexcept
{
unsigned long long x = value;
x *= other.value;
value = (unsigned int) (x % mod());
return *this;
}
constexpr modint &operator/=(const modint &other) noexcept
{
return *this *= other.inverse();
}
constexpr modint inverse() const noexcept
{
assert(value);
long long a = value,b = mod(),x = 1,y = 0;
while(b)
{
long long q = a/b;
a -= q*b; swap(a,b);
x -= q*y; swap(x,y);
}
return modint(x);
}
constexpr modint power(long long N) const noexcept
{
assert(N >= 0);
modint p = *this,ret = 1;
while(N)
{
if(N & 1) ret *= p;
p *= p;
N >>= 1;
}
return ret;
}
constexpr modint operator+() {return *this;}
constexpr modint operator-() {return modint() - *this;}
constexpr modint &operator++(int) noexcept {return *this += 1;}
constexpr modint &operator--(int) noexcept {return *this -= 1;}
friend modint operator+(const modint& lhs, const modint& rhs) {return modint(lhs) += rhs;}
friend modint operator-(const modint& lhs, const modint& rhs) {return modint(lhs) -= rhs;}
friend modint operator*(const modint& lhs, const modint& rhs) {return modint(lhs) *= rhs;}
friend modint operator/(const modint& lhs, const modint& rhs) {return modint(lhs) /= rhs;}
friend ostream &operator<<(ostream &os,const modint &x) {return os << x.value;}
};
//using mint = modint<998244353>;
using mint = modint<1000000007>;
template<class S>
struct combination
{
vector<S> f,invf;
combination(int N = 0) : f(1,1),invf(1,1)
{
update(N);
}
void update(int N)
{
if((int)f.size() > N) return;
int pi = (int)f.size();
N = max(N,pi*2);
f.resize(N+1),invf.resize(N+1);
for(int i = pi;i <= N;i++) f[i] = f[i-1]*i;
invf[N] = S(1)/f[N];
for(int i = N-1;i >= pi;i--) invf[i] = invf[i+1]*(i+1);
}
S factorial(int N)
{
update(N);
return f[N];
}
S invfactorial(int N)
{
update(N);
return invf[N];
}
S P(int N,int K)
{
assert(0 <= K && K <= N);
update(N);
return f[N]*invf[N-K];
}
S C(int N,int K)
{
assert(0 <= K && K <= N);
update(N);
return f[N]*invf[K]*invf[N-K];
}
S H(int N,int K)
{
if(!N) return K == 0 ? 1:0;
return C(N+K-1,K);
}
};
combination<mint> C;
int H,W;
void solve()
{
cin >> H >> W;
mint ans = 0;
/*for(int i = 0;i <= H;i++)for(int j = 0;j <= W;j++)
{
int z = i*W + (H-i)*j;
mint p = mint(2).power(H*W-z)*C.C(H,i)*C.C(W,j);
if((i+j) & 1) ans -= p;
else ans += p;
}*/
for(int i = 0;i <= H;i++)
{
long long rem = (H-i)*W;
mint coef = C.C(H,i);
mint t = mint(2).power(H-i);
mint p = coef*mint(2).power(rem)*mint(1-1/t).power(W);
if(i & 1) ans -= p;
else ans += p;
}
cout << ans << endl;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T = 1;
//cin >> T;
while(T--) solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0