結果
問題 | No.1846 Good Binary Matrix |
ユーザー |
![]() |
提出日時 | 2023-10-06 13:37:33 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 3,792 bytes |
コンパイル時間 | 1,118 ms |
コンパイル使用メモリ | 124,652 KB |
最終ジャッジ日時 | 2025-02-17 04:37:58 |
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 21 RE * 14 |
ソースコード
#include<iostream>#include<vector>#include<algorithm>#include<cstring>#include<cassert>#include<cmath>#include<ctime>#include<iomanip>#include<numeric>#include<stack>#include<queue>#include<map>#include<unordered_map>#include<set>#include<unordered_set>#include<bitset>#include<random>using namespace std;template<int m> struct modint{private:unsigned int value;static constexpr int mod() {return m;}public:constexpr modint(const long long x = 0) noexcept{long long y = x;if(y < 0 || y >= mod()){y %= mod();if(y < 0) y += mod();}value = (unsigned int)y;}constexpr unsigned int val() noexcept {return value;}constexpr modint &operator+=(const modint &other) noexcept{value += other.value;if(value >= mod()) value -= mod();return *this;}constexpr modint &operator-=(const modint &other) noexcept{unsigned int x = value;if(x < other.value) x += mod();x -= other.value;value = x;return *this;}constexpr modint &operator*=(const modint &other) noexcept{unsigned long long x = value;x *= other.value;value = (unsigned int) (x % mod());return *this;}constexpr modint &operator/=(const modint &other) noexcept{return *this *= other.inverse();}constexpr modint inverse() const noexcept{assert(value);long long a = value,b = mod(),x = 1,y = 0;while(b){long long q = a/b;a -= q*b; swap(a,b);x -= q*y; swap(x,y);}return modint(x);}constexpr modint power(long long N) const noexcept{assert(N >= 0);modint p = *this,ret = 1;while(N){if(N & 1) ret *= p;p *= p;N >>= 1;}return ret;}constexpr modint operator+() {return *this;}constexpr modint operator-() {return modint() - *this;}constexpr modint &operator++(int) noexcept {return *this += 1;}constexpr modint &operator--(int) noexcept {return *this -= 1;}friend modint operator+(const modint& lhs, const modint& rhs) {return modint(lhs) += rhs;}friend modint operator-(const modint& lhs, const modint& rhs) {return modint(lhs) -= rhs;}friend modint operator*(const modint& lhs, const modint& rhs) {return modint(lhs) *= rhs;}friend modint operator/(const modint& lhs, const modint& rhs) {return modint(lhs) /= rhs;}friend ostream &operator<<(ostream &os,const modint &x) {return os << x.value;}};//using mint = modint<998244353>;using mint = modint<1000000007>;template<class S>struct combination{vector<S> f,invf;combination(int N = 0) : f(1,1),invf(1,1){update(N);}void update(int N){if((int)f.size() > N) return;int pi = (int)f.size();N = max(N,pi*2);f.resize(N+1),invf.resize(N+1);for(int i = pi;i <= N;i++) f[i] = f[i-1]*i;invf[N] = S(1)/f[N];for(int i = N-1;i >= pi;i--) invf[i] = invf[i+1]*(i+1);}S factorial(int N){update(N);return f[N];}S invfactorial(int N){update(N);return invf[N];}S P(int N,int K){assert(0 <= K && K <= N);update(N);return f[N]*invf[N-K];}S C(int N,int K){assert(0 <= K && K <= N);update(N);return f[N]*invf[K]*invf[N-K];}S H(int N,int K){if(!N) return K == 0 ? 1:0;return C(N+K-1,K);}};combination<mint> C;int H,W;void solve(){cin >> H >> W;mint ans = 0;/*for(int i = 0;i <= H;i++)for(int j = 0;j <= W;j++){int z = i*W + (H-i)*j;mint p = mint(2).power(H*W-z)*C.C(H,i)*C.C(W,j);if((i+j) & 1) ans -= p;else ans += p;}*/for(int i = 0;i <= H;i++){long long rem = (H-i)*W;mint coef = C.C(H,i);mint t = mint(2).power(H-i);mint p = coef*mint(2).power(rem)*mint(1-1/t).power(W);if(i & 1) ans -= p;else ans += p;}cout << ans << endl;}int main(){ios::sync_with_stdio(false);cin.tie(nullptr);int T = 1;//cin >> T;while(T--) solve();}