結果

問題 No.2495 Three Sets
ユーザー umimelumimel
提出日時 2023-10-06 22:11:09
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 5,250 bytes
コンパイル時間 1,884 ms
コンパイル使用メモリ 173,720 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-07-26 16:22:15
合計ジャッジ時間 3,200 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 WA -
testcase_05 WA -
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 1 ms
6,944 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 WA -
testcase_11 AC 2 ms
6,940 KB
testcase_12 AC 2 ms
6,940 KB
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 AC 45 ms
6,940 KB
testcase_17 AC 45 ms
6,940 KB
testcase_18 AC 2 ms
6,940 KB
testcase_19 AC 29 ms
6,940 KB
testcase_20 AC 28 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pll = pair<ll, ll>;
#define drep(i, cc, n) for (ll i = (cc); i <= (n); ++i)
#define rep(i, n) drep(i, 0, n - 1)
#define all(a) (a).begin(), (a).end()
#define pb push_back
#define fi first
#define se second

mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());
const ll MOD1000000007 = 1000000007;
const ll MOD998244353 = 998244353;
const ll MOD[3] = {999727999, 1070777777, 1000000007};
const ll LINF = 1LL << 60;
const int IINF = (1 << 30) - 1;

template<typename T> struct Edge{
    int to; T w;
    Edge(int to_, T w_=1){
        to = to_;
        w=w_;
    }
};
template<typename T> using Tree = vector<vector<Edge<T>>>;
template<typename T> using Graph = vector<vector<Edge<T>>>;
/* 容量&重み付きエッジ for Dinic */
template<typename T> struct REdge{
    int to;
    T cap;
    T cost;
    int rev;
    REdge(int to_, T cap_, T cost_=1){
        to = to_;
        cap = cap_;
        cost = cost_;
    }
    
    REdge(int to_, T cap_, T cost_, int rev_){
        to = to_;
        cap = cap_;
        cost = cost_;
        rev = rev_;
    }
};

/* 残余グラフ for Dinic */
template<typename T> using RGraph = vector<vector<REdge<T>>>;

struct UnionFind{
    vector<ll> parent;
    vector<ll> sizes;
    
    UnionFind(ll N) : parent(N), sizes(N, 1){
        rep(i, N) parent[i] = i;
    }
    
    ll root(ll x){
        if (parent[x] == x) return x;
        return parent[x] = root(parent[x]);
    }
 
    void unite(ll x, ll y){
        ll rx = root(x);
        ll ry = root(y);
        if (rx == ry) return;
        if (sizes[rx] < sizes[ry]) swap(rx, ry);
        sizes[rx] += sizes[ry];
        parent[ry] = rx;
    }
 
    bool same(ll x, ll y){
        ll rx = root(x);
        ll ry = root(y);
        return rx == ry;
    }
 
    ll size(ll x){
        return sizes[root(x)];
    }
};

template<long long mod>
class modint{
    long long x;
public:
    modint(long long x=0) : x((x%mod+mod)%mod) {}
    modint operator-() const { 
      return modint(-x);
    }
    bool operator==(const modint& a){
        if(x == a) return true;
        else return false;
    }
    bool operator==(long long a){
        if(x == a) return true;
        else return false;
    }
    bool operator!=(const modint& a){
        if(x != a) return true;
        else return false;
    }
    bool operator!=(long long a){
        if(x != a) return true;
        else return false;
    }
    modint& operator+=(const modint& a) {
        if ((x += a.x) >= mod) x -= mod;
        return *this;
    }
    modint& operator-=(const modint& a) {
        if ((x += mod-a.x) >= mod) x -= mod;
        return *this;
    }
    modint& operator*=(const  modint& a) {
        (x *= a.x) %= mod;
        return *this;
    }
    modint operator+(const modint& a) const {
        modint res(*this);
        return res+=a;
    }
    modint operator-(const modint& a) const {
        modint res(*this);
        return res-=a;
    }
    modint operator*(const modint& a) const {
        modint res(*this);
        return res*=a;
    }
    modint pow(long long t) const {
        if (!t) return 1;
        modint a = pow(t>>1);
        a *= a;
        if (t&1) a *= *this;
        return a;
    }
    // for prime mod
    modint inv() const {
        return pow(mod-2);
    }
    modint& operator/=(const modint& a) {
        return (*this) *= a.inv();
    }
    modint operator/(const modint& a) const {
        modint res(*this);
        return res/=a;
    }

    friend std::istream& operator>>(std::istream& is, modint& m) noexcept {
        is >> m.x;
        m.x %= mod;
        if (m.x < 0) m.x += mod;
        return is;
    }

    friend ostream& operator<<(ostream& os, const modint& m){
        os << m.x;
        return os;
    }
};

using mint = modint<MOD998244353>;

int main(){
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    
    ll NA, NB, NC; cin >> NA >> NB >> NC;
    vector<ll> A(NA), B(NB), C(NC);
    rep(i, NA) cin >> A[i];
    rep(j, NB) cin >> B[j];
    rep(k, NC) cin >> C[k];
    sort(all(A), greater<ll>());
    sort(all(B), greater<ll>());
    sort(all(C), greater<ll>());

    ll sumA = 0, sumB = 0, sumC = 0;
    ll i = 0, j = 0, k = 0;
    while(A[i]>=0){
        sumA+=A[i];
        i++;
        if(i==NA){
            break;
        }
    }
    while(B[j]>=0){
        sumB+=B[j];
        j++;
        if(j==NB){
            break;
        }
    }
    while(C[k]>=0){
        sumC+=C[k];
        k++;
        if(k==NC){
            break;
        }
    }

    i--; j--; k--;

    while(true){
        ll dA = 0, dB = 0, dC = 0;
        if(i<NA-1){
            dA = A[i+1]*(j+1) + sumC;
        }
        if(j<NB-1){
            dB = B[j+1]*(k+1) + sumA;
        }
        if(k<NC-1){
            dC = C[k+1]*(i+1) + sumB;
        }

        //全て変化が0以下
        if(dA<=0 && dB<=0 && dC<=0) break;

        if(dB<=dA && dC<=dA){ //dAが最大
            i++;
            sumA+=A[i];
        }else if(dA<=dB && dC<=dB){ //dBが最大
            j++;
            sumB+=B[j];
        }else{
            k++;
            sumC+=C[k];
        }
    }
    
    cout << sumA*(j+1) + sumB*(k+1) + sumC*(i+1) << endl;
}
0