結果

問題 No.2497 GCD of LCMs
ユーザー AerenAeren
提出日時 2023-10-06 22:22:14
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 15,033 bytes
コンパイル時間 3,597 ms
コンパイル使用メモリ 282,388 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-26 16:34:29
合計ジャッジ時間 5,032 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 1 ms
6,940 KB
testcase_04 WA -
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 12 ms
6,940 KB
testcase_08 AC 29 ms
6,940 KB
testcase_09 AC 32 ms
6,940 KB
testcase_10 AC 98 ms
6,940 KB
testcase_11 AC 29 ms
6,940 KB
testcase_12 AC 72 ms
6,940 KB
testcase_13 AC 118 ms
6,944 KB
testcase_14 AC 93 ms
6,940 KB
testcase_15 AC 97 ms
6,944 KB
testcase_16 AC 119 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
// #include <x86intrin.h>
using namespace std;
using namespace numbers;

using uint = unsigned int;
template<uint _mod>
struct modular_fixed_base{
	static constexpr uint mod(){
		return _mod;
	}
	template<class T>
	static vector<modular_fixed_base> precalc_power(T base, int SZ){
		vector<modular_fixed_base> res(SZ + 1, 1);
		for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base;
		return res;
	}
	static vector<modular_fixed_base> _INV;
	static void precalc_inverse(int SZ){
		if(_INV.empty()) _INV.assign(2, 1);
		for(auto x = _INV.size(); x <= SZ; ++ x) _INV.push_back(_mod / x * -_INV[_mod % x]);
	}
	// _mod must be a prime
	static modular_fixed_base _primitive_root;
	static modular_fixed_base primitive_root(){
		if(_primitive_root) return _primitive_root;
		if(_mod == 2) return _primitive_root = 1;
		if(_mod == 998244353) return _primitive_root = 3;
		uint divs[20] = {};
		divs[0] = 2;
		int cnt = 1;
		uint x = (_mod - 1) / 2;
		while(x % 2 == 0) x /= 2;
		for(auto i = 3; 1LL * i * i <= x; i += 2){
			if(x % i == 0){
				divs[cnt ++] = i;
				while(x % i == 0) x /= i;
			}
		}
		if(x > 1) divs[cnt ++] = x;
		for(auto g = 2; ; ++ g){
			bool ok = true;
			for(auto i = 0; i < cnt; ++ i){
				if((modular_fixed_base(g).power((_mod - 1) / divs[i])) == 1){
					ok = false;
					break;
				}
			}
			if(ok) return _primitive_root = g;
		}
	}
	constexpr modular_fixed_base(): data(){ }
	modular_fixed_base(const double &x){ data = normalize(llround(x)); }
	modular_fixed_base(const long double &x){ data = normalize(llround(x)); }
	template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base(const T &x){ data = normalize(x); }
	template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr> static uint normalize(const T &x){
		int sign = x >= 0 ? 1 : -1;
		uint v =  _mod <= sign * x ? sign * x % _mod : sign * x;
		if(sign == -1 && v) v = _mod - v;
		return v;
	}
	const uint &operator()() const{ return data; }
	template<class T> operator T() const{ return data; }
	modular_fixed_base &operator+=(const modular_fixed_base &otr){ if((data += otr.data) >= _mod) data -= _mod; return *this; }
	modular_fixed_base &operator-=(const modular_fixed_base &otr){ if((data += _mod - otr.data) >= _mod) data -= _mod; return *this; }
	template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base &operator+=(const T &otr){ return *this += modular_fixed_base(otr); }
	template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base &operator-=(const T &otr){ return *this -= modular_fixed_base(otr); }
	modular_fixed_base &operator++(){ return *this += 1; }
	modular_fixed_base &operator--(){ return *this += _mod - 1; }
	modular_fixed_base operator++(int){ modular_fixed_base result(*this); *this += 1; return result; }
	modular_fixed_base operator--(int){ modular_fixed_base result(*this); *this += _mod - 1; return result; }
	modular_fixed_base operator-() const{ return modular_fixed_base(_mod - data); }
	modular_fixed_base &operator*=(const modular_fixed_base &rhs){
		data = (unsigned long long)data * rhs.data % _mod;
		return *this;
	}
	template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr>
	modular_fixed_base &inplace_power(T e){
		if(!data) return *this = {};
		if(data == 1) return *this;
		if(data == mod() - 1) return e % 2 ? *this : *this = -*this;
		if(e < 0) *this = 1 / *this, e = -e;
		modular_fixed_base res = 1;
		for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this;
		return *this = res;
	}
	template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr>
	modular_fixed_base power(T e) const{
		return modular_fixed_base(*this).inplace_power(e);
	}
	modular_fixed_base &operator/=(const modular_fixed_base &otr){
		int a = otr.data, m = _mod, u = 0, v = 1;
		if(a < _INV.size()) return *this *= _INV[a];
		while(a){
			int t = m / a;
			m -= t * a; swap(a, m);
			u -= t * v; swap(u, v);
		}
		assert(m == 1);
		return *this *= u;
	}
	uint data;
};
template<uint _mod> vector<modular_fixed_base<_mod>> modular_fixed_base<_mod>::_INV;
template<uint _mod> modular_fixed_base<_mod> modular_fixed_base<_mod>::_primitive_root;
template<uint _mod> bool operator==(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data == rhs.data; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> bool operator==(const modular_fixed_base<_mod> &lhs, T rhs){ return lhs == modular_fixed_base<_mod>(rhs); }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> bool operator==(T lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) == rhs; }
template<uint _mod> bool operator!=(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return !(lhs == rhs); }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> bool operator!=(const modular_fixed_base<_mod> &lhs, T rhs){ return !(lhs == rhs); }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> bool operator!=(T lhs, const modular_fixed_base<_mod> &rhs){ return !(lhs == rhs); }
template<uint _mod> bool operator<(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data < rhs.data; }
template<uint _mod> bool operator>(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data > rhs.data; }
template<uint _mod> bool operator<=(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data <= rhs.data; }
template<uint _mod> bool operator>=(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data >= rhs.data; }
template<uint _mod> modular_fixed_base<_mod> operator+(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) += rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator+(const modular_fixed_base<_mod> &lhs, T rhs){ return modular_fixed_base<_mod>(lhs) += rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator+(T lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) += rhs; }
template<uint _mod> modular_fixed_base<_mod> operator-(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) -= rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator-(const modular_fixed_base<_mod> &lhs, T rhs){ return modular_fixed_base<_mod>(lhs) -= rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator-(T lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) -= rhs; }
template<uint _mod> modular_fixed_base<_mod> operator*(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) *= rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator*(const modular_fixed_base<_mod> &lhs, T rhs){ return modular_fixed_base<_mod>(lhs) *= rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator*(T lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) *= rhs; }
template<uint _mod> modular_fixed_base<_mod> operator/(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs) { return modular_fixed_base<_mod>(lhs) /= rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator/(const modular_fixed_base<_mod> &lhs, T rhs) { return modular_fixed_base<_mod>(lhs) /= rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator/(T lhs, const modular_fixed_base<_mod> &rhs) { return modular_fixed_base<_mod>(lhs) /= rhs; }
template<uint _mod> istream &operator>>(istream &in, modular_fixed_base<_mod> &number){
	long long x;
	in >> x;
	number.data = modular_fixed_base<_mod>::normalize(x);
	return in;
}
// #define _SHOW_FRACTION
template<uint _mod> ostream &operator<<(ostream &out, const modular_fixed_base<_mod> &number){
	out << number();
#if defined(LOCAL) && defined(_SHOW_FRACTION)
	cerr << "(";
	for(auto d = 1; ; ++ d){
		if((number * d).data <= 1000000){
			cerr << (number * d).data;
			if(d != 1) cerr << "/" << d;
			break;
		}
		else if((-number * d).data <= 1000000){
			cerr << "-" << (-number * d).data;
			if(d != 1) cerr << "/" << d;
			break;
		}
	}
	cerr << ")";
#endif
	return out;
}
#undef _SHOW_FRACTION

// const uint mod = 1e9 + 7; // 1000000007
const uint mod = (119 << 23) + 1; // 998244353
// const uint mod = 1e9 + 9; // 1000000009
using modular = modular_fixed_base<mod>;

template<class T>
struct graph{
	struct E{
		int from, to;
		T cost;
	};
	int n;
	vector<E> edge;
	vector<vector<int>> adj;
	function<bool(int)> ignore;
	graph(int n = 1): n(n), adj(n){
		assert(n >= 1);
	}
	graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
		assert(n >= 1);
		if(undirected){
			for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v);
		}
		else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v);
	}
	graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
		assert(n >= 1);
		if(undirected){
			for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w);
		}
		else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w);
	}
	graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){
		assert(n >= 1);
		for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v);
	}
	graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){
		assert(n >= 1);
		for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w);
	}
	int operator()(int u, int id) const{
		#ifdef LOCAL
		assert(0 <= id && id < (int)edge.size());
		assert(edge[id].from == u || edge[id].to == u);
		#endif
		return u ^ edge[id].from ^ edge[id].to;
	}
	int link(int u, int v, T w = {}){ // insert an undirected edge
		int id = (int)edge.size();
		adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w});
		return id;
	}
	int orient(int u, int v, T w = {}){ // insert a directed edge
		int id = (int)edge.size();
		adj[u].push_back(id), edge.push_back({u, v, w});
		return id;
	}
	void clear(){
		for(auto [u, v, w]: edge){
			adj[u].clear();
			adj[v].clear();
		}
		edge.clear();
		ignore = {};
	}
	graph transposed() const{ // the transpose of the directed graph
		graph res(n);
		for(auto &e: edge) res.orient(e.to, e.from, e.cost);
		res.ignore = ignore;
		return res;
	}
	int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule)
		return (int)adj[u].size();
	}
	// The adjacency list is sorted for each vertex.
	vector<vector<int>> get_adjacency_list() const{
		vector<vector<int>> res(n);
		for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){
			if(ignore && ignore(id)) continue;
			res[(*this)(u, id)].push_back(u);
		}
		return res;
	}
	void set_ignoration_rule(const function<bool(int)> &f){
		ignore = f;
	}
	void reset_ignoration_rule(){
		ignore = nullptr;
	}
	friend ostream &operator<<(ostream &out, const graph &g){
		for(auto id = 0; id < (int)g.edge.size(); ++ id){
			if(g.ignore && g.ignore(id)) continue;
			auto &e = g.edge[id];
			out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n";
		}
		return out;
	}
};

template<bool Enable_small_to_large = true>
struct disjoint_set{
	int n, _classes;
	vector<int> p;
	disjoint_set(int n): n(n), _classes(n), p(n, -1){ }
	int make_set(){
		p.push_back(-1);
		++ _classes;
		return n ++;
	}
	int classes() const{
		return _classes;
	}
	int root(int u){
		return p[u] < 0 ? u : p[u] = root(p[u]);
	}
	bool share(int a, int b){
		return root(a) == root(b);
	}
	int size(int u){
		return -p[root(u)];
	}
	bool merge(int u, int v){
		u = root(u), v = root(v);
		if(u == v) return false;
		-- _classes;
		if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v);
		p[u] += p[v], p[v] = u;
		return true;
	}
	bool merge(int u, int v, auto act){
		u = root(u), v = root(v);
		if(u == v) return false;
		-- _classes;
		bool swapped = false;
		if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v), swapped = true;
		p[u] += p[v], p[v] = u;
		act(u, v, swapped);
		return true;
	}
	void clear(){
		_classes = n;
		fill(p.begin(), p.end(), -1);
	}
	vector<vector<int>> group_up(){
		vector<vector<int>> g(n);
		for(auto i = 0; i < n; ++ i) g[root(i)].push_back(i);
		g.erase(remove_if(g.begin(), g.end(), [&](auto &s){ return s.empty(); }), g.end());
		return g;
	}
};

int main(){
	cin.tie(0)->sync_with_stdio(0);
	cin.exceptions(ios::badbit | ios::failbit);
	int n, m;
	cin >> n >> m;
	vector<int> a(n);
	copy_n(istream_iterator<int>(cin), n, a.begin());
	graph<int> g(n);
	for(auto i = 0; i < m; ++ i){
		int u, v;
		cin >> u >> v, -- u, -- v;
		g.link(u, v, 1);
	}
	map<int, vector<int>> appear;
	for(auto u = 0; u < n; ++ u){
		int x = a[u];
		for(auto p = 2; p * p <= x; ++ p){
			if(x % p == 0){
				if(!appear.contains(p)){
					appear[p] = vector<int>(n);
				}
				int e = 0;
				while(x % p == 0){
					x /= p;
					++ e;
				}
				appear[p][u] = e;
			}
		}
		if(x >= 2){
			if(!appear.contains(x)){
				appear[x] = vector<int>(n);
			}
			appear[x][u] = 1;
		}
	}
	vector<modular> res(n, 1);
	for(auto [p, e]: appear){
		auto power = modular::precalc_power(p, n);
		static vector<int> order(n);
		iota(order.begin(), order.end(), 0);
		ranges::sort(order, [&](int u, int v){ return e[u] < e[v]; });
		static disjoint_set dsu(n);
		dsu.clear();
		static vector<int> was(n), active(n);
		active[0] = p;
		res[0] *= power[e[0]];
		for(auto u: order){
			was[u] = p;
			for(auto id: g.adj[u]){
				int v = g(u, id);
				if(was[v] != p || !dsu.merge(u, v)){
					continue;
				}
				for(auto w = 0; w < n; ++ w){
					if(dsu.share(0, w) && active[w] != p){
						active[w] = p;
						res[w] *= power[e[u]];
					}
				}
			}
		}
	}
	ranges::copy(res, ostream_iterator<modular>(cout, "\n"));
	return 0;
}

/*

*/

////////////////////////////////////////////////////////////////////////////////////////
//                                                                                    //
//                                   Coded by Aeren                                   //
//                                                                                    //
////////////////////////////////////////////////////////////////////////////////////////
0