結果

問題 No.2508 Discriminant
ユーザー dyktr_06
提出日時 2023-10-20 21:28:52
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 935 ms / 2,000 ms
コード長 15,617 bytes
コンパイル時間 4,236 ms
コンパイル使用メモリ 262,444 KB
最終ジャッジ日時 2025-02-17 08:34:48
ジャッジサーバーID
(参考情報)
judge3 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;
#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(n) for(int i = 0; i < (int)(n); ++i)
#define rep2(i, n) for(int i = 0; i < (int)(n); ++i)
#define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i)
#define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i)
#define ALL(a) (a).begin(), (a).end()
#define Sort(a) (sort((a).begin(), (a).end()))
#define RSort(a) (sort((a).rbegin(), (a).rend()))
#define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end()))
typedef long long int ll;
typedef unsigned long long ul;
typedef long double ld;
typedef vector<int> vi;
typedef vector<long long> vll;
typedef vector<char> vc;
typedef vector<string> vst;
typedef vector<double> vd;
typedef vector<long double> vld;
typedef pair<long long, long long> P;
template<class T> long long sum(const T& a){ return accumulate(a.begin(), a.end(), 0LL); }
template<class T> auto min(const T& a){ return *min_element(a.begin(), a.end()); }
template<class T> auto max(const T& a){ return *max_element(a.begin(), a.end()); }
const long long MINF = 0x7fffffffffff;
const long long INF = 0x1fffffffffffffff;
const long long MOD = 998244353;
const long double EPS = 1e-9;
const long double PI = acos(-1);
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p){ is >> p.first >> p.second; return is; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){ os << "(" << p.first << ", " << p.second << ")"; return
    os; }
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for(T &in : v) is >> in; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v
    .size() ? " " : ""); } return os; }
template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " ";
    } return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int)st.size(); ++i){ os << *itr
    << (i + 1 != (int)st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int)st.size(); ++i){ os <<
    *itr << (i + 1 != (int)st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, queue<T> q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; }
template <typename T> ostream &operator<<(ostream &os, deque<T> q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; }
template <typename T> ostream &operator<<(ostream &os, stack<T> st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; }
template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq){ while(pq.size()){ os
    << pq.top() << " "; pq.pop(); } return os; }
template<class T, class U> inline T vin(T& vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; }
template<class T> inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; }
template<class... T> void in(T&... a){ (cin >> ... >> a); }
void out(){ cout << '\n'; }
template<class T, class... Ts> void out(const T& a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }
template<class T, class U> void inGraph(vector<vector<T>>& G, U n, U m, bool directed = false){ G.resize(n); for(int i = 0; i < m; ++i){ int a, b;
    cin >> a >> b; a--, b--; G[a].push_back(b); if(!directed) G[b].push_back(a); } }
template <long long base = 1000000LL, int digit = 6>
struct BigInt{
int sign = 1;
vector<long long> val;
constexpr BigInt(const long long _val = 0) noexcept {
if(_val != 0){
val.assign(1, abs(_val));
shift();
}
if(_val < 0) sign = -1;
}
constexpr BigInt(const vector<long long> &_val) noexcept : val(_val) {}
constexpr BigInt(const string &s) noexcept {
stoi(s);
}
private:
void normalize(){
while(!val.empty() && val.back() == 0) val.pop_back();
if(val.empty()) sign = 1;
}
vector<long long> karatsuba_algorithm(vector<long long> &a, vector<long long> &b){
const int n = (int) a.size();
const int h = n >> 1;
assert(a.size() == b.size());
assert((n & (n - 1)) == 0);
if(n <= 64){
vector<long long> res(2 * n - 1);
for(int i = 0; i < n; ++i){
for(int j = 0; j < n; ++j){
res[i + j] += a[i] * b[j];
}
}
return res;
}
vector<long long> p(h), q(h), r(h), s(h), t(h), u(h);
for(int i = 0; i < h; ++i){
p[i] = a[i + h];
q[i] = a[i];
r[i] = b[i + h];
s[i] = b[i];
t[i] = p[i] + q[i];
u[i] = r[i] + s[i];
}
p = karatsuba_algorithm(p, r);
q = karatsuba_algorithm(q, s);
t = karatsuba_algorithm(t, u);
vector<long long> res(2 * n - 1, 0);
for(int i = 0; i < n - 1; ++i){
res[i] += q[i];
res[i + h] += t[i] - p[i] - q[i];
res[i + n] += p[i];
}
return res;
}
pair<BigInt, BigInt> divide_naive(const BigInt& rhs) const {
assert(!rhs.val.empty());
const int k = base / (rhs.val.back() + 1);
const BigInt dividend = (sign == 1 ? *this : -(*this)) * k;
const BigInt divisor = (rhs.sign == 1 ? rhs : -rhs) * k;
BigInt quo, rem = 0;
quo.val.resize(dividend.val.size());
const int n = divisor.val.size();
for(int i = (int) dividend.val.size() - 1; i >= 0; --i){
rem.val.emplace(rem.val.begin(), dividend.val[i]);
quo.val[i] = ((n < (int) rem.val.size() ? rem.val[n] * base : 0) + ((n - 1) < (int) rem.val.size() ? rem.val[n - 1] : 0)) / divisor.val
                .back();
rem -= divisor * quo.val[i];
while (rem.sign == -1) {
rem += divisor;
--quo.val[i];
}
}
quo.sign = sign * rhs.sign;
quo.normalize();
rem.sign = sign;
rem.normalize();
return {quo, rem / k};
}
pair<BigInt, BigInt> divide_newton(const BigInt& rhs) const {
assert(!rhs.val.empty());
int preci = val.size() - rhs.val.size();
BigInt t(1);
BigInt two = BigInt(2) << rhs.val.size();
BigInt pre;
int lim = min(preci, 3);
int rhslim = min(int(rhs.val.size()), 6);
t <<= lim;
while(pre != t){
BigInt rb = rhs >> (rhs.val.size() - rhslim);
if(rhslim != (int) rhs.val.size()) rb += BigInt(1);
pre = t;
t *= (BigInt(2) << (rhslim + lim)) - rb * t;
t.val = vector<long long>(t.val.begin() + lim + rhslim, t.val.end());
}
if(lim != preci){
pre = BigInt();
while(pre != t){
BigInt rb = rhs >> (rhs.val.size() - rhslim);
if(rhslim != (int) rhs.val.size()) rb += BigInt(1);
pre = t;
t *= (BigInt(2) << (rhslim + lim)) - rb * t;
t.val = vector<long long>(t.val.begin() + lim + rhslim, t.val.end());
int next_lim = min(lim * 2 + 1, preci);
if (next_lim != lim) t <<= next_lim - lim;
int next_rhslim = min(rhslim * 2 + 1, int(rhs.val.size()));
lim = next_lim;
rhslim = next_rhslim;
}
}
BigInt quo = (*this) * t;
quo.val = vector<long long>(quo.val.begin() + val.size(), quo.val.end());
BigInt mul = quo * rhs;
while(mul + rhs <= (*this)){
quo += BigInt(1);
mul += rhs;
}
BigInt rem = *this - quo * rhs;
return {quo, rem};
}
public:
void stoi(string &s){
if(s == "0") return;
int n = s.size(), idx = 0;
if(s[0] == '-'){
n -= 1;
sign = -1;
idx = 1;
}
int len = (n + digit - 1) / digit, rem = n % digit;
if(rem == 0) rem += digit;
val.resize(len);
for(int i = len - 1; i >= 0; --i){
if(i == len - 1){
val[i] = stoll(s.substr(idx, rem));
idx += rem;
}else{
val[i] = stoll(s.substr(idx, digit));
idx += digit;
}
}
}
string itos() const {
string res = "";
if(sign == -1) res += "-";
bool flag = false;
for(int i = (int) val.size() - 1; i >= 0; --i){
if(val[i] > 0 && !flag){
res += to_string(val[i]);
flag = true;
}else if(flag){
string rem = to_string(val[i]);
res += string(digit - rem.size(), '0') + rem;
}
}
return (res.empty() || res == "-") ? "0" : res;
}
pair<BigInt, BigInt> divide_mod(const BigInt& rhs){
assert(!rhs.val.empty());
BigInt div = *this / rhs;
return make_pair(div, *this - div * rhs);
}
BigInt& shift(){
for(int i = 0; i < (int) val.size() - 1; ++i){
if(val[i] >= 0){
val[i + 1] += val[i] / base;
val[i] %= base;
}else{
long long x = (-val[i] + base - 1) / base;
val[i] += x * base;
val[i + 1] -= x;
}
}
while(val.back() >= base){
val.emplace_back(val.back() / base);
val[val.size() - 2] %= base;
}
return *this;
}
BigInt& operator=(const BigInt& x) = default;
inline BigInt& operator+=(const BigInt& rhs) noexcept {
if(rhs.val.empty()) return *this;
if(sign != rhs.sign) return *this -= -rhs;
if(val.size() < rhs.val.size()){
val.resize(rhs.val.size());
}
for(int i = 0; i < (int) rhs.val.size(); ++i){
val[i] += rhs.val[i];
}
return (*this).shift();
}
inline BigInt& operator-=(const BigInt& rhs) noexcept {
if(rhs.val.empty()) return *this;
if(sign != rhs.sign) return *this += -rhs;
if((sign == 1 ? *this : -(*this)) < (rhs.sign == 1 ? rhs : -rhs)){
return *this = -(rhs - *this);
}
for(int i = 0; i < (int) rhs.val.size(); ++i){
val[i] -= rhs.val[i];
}
shift();
normalize();
return *this;
}
// Karatsuba Algorithm (O(N^(1.58)))
inline BigInt& operator*=(const BigInt& rhs) noexcept {
if(val.empty() || rhs.val.empty()){
return *this = BigInt();
}
sign *= rhs.sign;
vector<long long> rhsval = rhs.val;
int k = 1;
while(k < (int) max(val.size(), rhsval.size())){
k *= 2;
}
val.resize(k), rhsval.resize(k);
val = karatsuba_algorithm(val, rhsval);
shift();
normalize();
return *this;
}
// Newton method
inline BigInt& operator/=(const BigInt& rhst) noexcept {
assert(!rhst.val.empty());
if(val.empty()) return *this;
if((int) val.size() <= 32 && (int) rhst.val.size() <= 32){
return *this = divide_naive(rhst).first;
}
BigInt rhs = rhst;
int mulsign = sign * rhs.sign;
sign = 1, rhs.sign = 1;
if(*this < rhs){
return *this = BigInt();
}
*this = divide_newton(rhs).first;
sign = mulsign;
normalize();
return *this;
}
inline BigInt& operator%=(const BigInt& rhs) noexcept {
assert(!rhs.val.empty());
return *this = *this - (*this / rhs) * rhs;
}
inline BigInt& operator++() { return *this += 1; }
inline BigInt operator++(int) {
const BigInt res = *this;
++(*this);
return res;
}
inline BigInt& operator--() { return *this -= 1; }
inline BigInt operator--(int) {
const BigInt res = *this;
--(*this);
return res;
}
inline BigInt operator+() const { return *this; }
inline BigInt operator-() const {
BigInt res = *this;
if (!res.val.empty()) res.sign = -res.sign;
return res;
}
inline BigInt& operator<<=(const unsigned int rhs){
if(val.back() >= 1 || (int) val.size() >= 2){
vector<long long> tmp(rhs, 0);
val.insert(val.begin(), tmp.begin(), tmp.end());
}
return *this;
}
inline BigInt& operator>>=(const unsigned int rhs){
if(rhs == 0) return *this;
if(rhs > val.size()) val = {0};
else val = vector<long long>(val.begin() + rhs, val.end());
return *this;
}
inline bool operator<(const BigInt& rhs) const {
if(sign != rhs.sign) return sign < rhs.sign;
if(val.size() != rhs.val.size()) return sign * val.size() < rhs.sign * rhs.val.size();
for(int i = (int) val.size() - 1; i >= 0; --i){
if(val[i] != rhs.val[i]) return sign * val[i] < rhs.sign * rhs.val[i];
}
return false;
}
inline bool operator>(const BigInt& rhs) const { return rhs < (*this); }
inline bool operator<=(const BigInt& rhs) const { return !((*this) > rhs); }
inline bool operator>=(const BigInt& rhs) const { return !((*this) < rhs); }
friend inline BigInt operator+(const BigInt& lhs, const BigInt& rhs) noexcept { return BigInt(lhs) += rhs; }
friend inline BigInt operator-(const BigInt& lhs, const BigInt& rhs) noexcept { return BigInt(lhs) -= rhs; }
friend inline BigInt operator*(const BigInt& lhs, const BigInt& rhs) noexcept { return BigInt(lhs) *= rhs; }
friend inline BigInt operator/(const BigInt& lhs, const BigInt& rhs) noexcept { return BigInt(lhs) /= rhs; }
friend inline BigInt operator%(const BigInt& lhs, const BigInt& rhs) noexcept { return BigInt(lhs) %= rhs; }
friend inline BigInt operator<<(const BigInt& lhs, const unsigned int rhs) noexcept { return BigInt(lhs) <<= rhs; }
friend inline BigInt operator>>(const BigInt& lhs, const unsigned int rhs) noexcept { return BigInt(lhs) >>= rhs; }
friend inline bool operator==(const BigInt& lhs, const BigInt& rhs) noexcept { return lhs.val == rhs.val; }
friend inline bool operator!=(const BigInt& lhs, const BigInt& rhs) noexcept { return lhs.val != rhs.val; }
friend inline istream& operator>>(istream& is, BigInt& x) noexcept {
string s;
is >> s;
x.stoi(s);
return is;
}
friend inline ostream& operator<<(ostream& os, const BigInt& x) noexcept { return os << x.itos(); }
};
BigInt a, p, q;
void input(){
in(a, p, q);
}
void solve(){
BigInt A = a, B = -a * (p + q), C = p * q * a;
if(B * B > 4 * A * C){
out("Yes");
}else{
out("No");
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(20);
input();
solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0