結果
問題 | No.2514 Twelvefold Way Returns |
ユーザー | 👑 hos.lyric |
提出日時 | 2023-10-20 21:31:25 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 19 ms / 3,000 ms |
コード長 | 5,526 bytes |
コンパイル時間 | 1,179 ms |
コンパイル使用メモリ | 112,328 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-20 17:32:28 |
合計ジャッジ時間 | 2,617 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 4 ms
5,376 KB |
testcase_03 | AC | 3 ms
5,376 KB |
testcase_04 | AC | 14 ms
5,376 KB |
testcase_05 | AC | 12 ms
5,376 KB |
testcase_06 | AC | 10 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 8 ms
5,376 KB |
testcase_09 | AC | 8 ms
5,376 KB |
testcase_10 | AC | 16 ms
5,376 KB |
testcase_11 | AC | 3 ms
5,376 KB |
testcase_12 | AC | 5 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 4 ms
5,376 KB |
testcase_15 | AC | 8 ms
5,376 KB |
testcase_16 | AC | 16 ms
5,376 KB |
testcase_17 | AC | 11 ms
5,376 KB |
testcase_18 | AC | 17 ms
5,376 KB |
testcase_19 | AC | 16 ms
5,376 KB |
testcase_20 | AC | 17 ms
5,376 KB |
testcase_21 | AC | 17 ms
5,376 KB |
testcase_22 | AC | 16 ms
5,376 KB |
testcase_23 | AC | 6 ms
5,376 KB |
testcase_24 | AC | 17 ms
5,376 KB |
testcase_25 | AC | 9 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 17 ms
5,376 KB |
testcase_28 | AC | 6 ms
5,376 KB |
testcase_29 | AC | 5 ms
5,376 KB |
testcase_30 | AC | 5 ms
5,376 KB |
testcase_31 | AC | 6 ms
5,376 KB |
testcase_32 | AC | 3 ms
5,376 KB |
testcase_33 | AC | 1 ms
5,376 KB |
testcase_34 | AC | 4 ms
5,376 KB |
testcase_35 | AC | 13 ms
5,376 KB |
testcase_36 | AC | 2 ms
5,376 KB |
testcase_37 | AC | 1 ms
5,376 KB |
testcase_38 | AC | 16 ms
5,376 KB |
testcase_39 | AC | 19 ms
5,376 KB |
testcase_40 | AC | 17 ms
5,376 KB |
ソースコード
#include <cassert> #include <cmath> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <bitset> #include <complex> #include <deque> #include <functional> #include <iostream> #include <limits> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using Int = long long; template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; } template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } #define COLOR(s) ("\x1b[" s "m") //////////////////////////////////////////////////////////////////////////////// template <unsigned M_> struct ModInt { static constexpr unsigned M = M_; unsigned x; constexpr ModInt() : x(0U) {} constexpr ModInt(unsigned x_) : x(x_ % M) {} constexpr ModInt(unsigned long long x_) : x(x_ % M) {} constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {} constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {} ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; } ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; } ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; } ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); } ModInt pow(long long e) const { if (e < 0) return inv().pow(-e); ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b; } ModInt inv() const { unsigned a = M, b = x; int y = 0, z = 1; for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; } assert(a == 1U); return ModInt(y); } ModInt operator+() const { return *this; } ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; } ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); } ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); } ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); } ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); } template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); } template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); } template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); } template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); } explicit operator bool() const { return x; } bool operator==(const ModInt &a) const { return (x == a.x); } bool operator!=(const ModInt &a) const { return (x != a.x); } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; } }; //////////////////////////////////////////////////////////////////////////////// constexpr unsigned MO = 998244353; using Mint = ModInt<MO>; constexpr int LIM_INV = 1010; Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV]; void prepare() { inv[1] = 1; for (int i = 2; i < LIM_INV; ++i) { inv[i] = -((Mint::M / i) * inv[Mint::M % i]); } fac[0] = invFac[0] = 1; for (int i = 1; i < LIM_INV; ++i) { fac[i] = fac[i - 1] * i; invFac[i] = invFac[i - 1] * inv[i]; } } Mint binom(Int n, Int k) { if (n < 0) { if (k >= 0) { return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k); } else if (n - k >= 0) { return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k); } else { return 0; } } else { if (0 <= k && k <= n) { assert(n < LIM_INV); return fac[n] * invFac[k] * invFac[n - k]; } else { return 0; } } } using P = pair<Mint, Mint>; P mul(const P &a, const P &b) { const Mint c2 = a.second * b.second; return P(a.first * b.first - c2, a.first * b.second + a.second * b.first - c2); } P power(P a, Int e) { P b(1, 0); for (; ; a = mul(a, a)) { if (e & 1) b = mul(b, a); if (!(e >>= 1)) return b; } } int main() { prepare(); int N, M; for (; ~scanf("%d%d", &N, &M); ) { Mint ans = 0; for (int j = 0; j <= M; ++j) for (int k = 0; k <= M - j; ++k) { const int i = M - j - k; // (w^2)^j w^k exp((i + w j + w^2 k) x) P p(0, 0); p.first += i; p.second += j; p.first -= k; p.second -= k; p = power(p, N); switch ((2 * j + k) % 3) { case 0: break; case 1: p = mul(p, P(0, 1)); break; case 2: p = mul(p, P(-1, -1)); break; default: assert(false); } ans += invFac[i] * invFac[j] * invFac[k] * p.first; } ans *= fac[M]; ans *= Mint(3).pow(-M); printf("%u\n", ans.x); } return 0; }