結果
問題 | No.2514 Twelvefold Way Returns |
ユーザー |
👑 |
提出日時 | 2023-10-20 21:31:25 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 19 ms / 3,000 ms |
コード長 | 5,526 bytes |
コンパイル時間 | 1,179 ms |
コンパイル使用メモリ | 112,328 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-20 17:32:28 |
合計ジャッジ時間 | 2,617 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 38 |
ソースコード
#include <cassert>#include <cmath>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <algorithm>#include <bitset>#include <complex>#include <deque>#include <functional>#include <iostream>#include <limits>#include <map>#include <numeric>#include <queue>#include <random>#include <set>#include <sstream>#include <string>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using Int = long long;template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i>= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }#define COLOR(s) ("\x1b[" s "m")////////////////////////////////////////////////////////////////////////////////template <unsigned M_> struct ModInt {static constexpr unsigned M = M_;unsigned x;constexpr ModInt() : x(0U) {}constexpr ModInt(unsigned x_) : x(x_ % M) {}constexpr ModInt(unsigned long long x_) : x(x_ % M) {}constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }ModInt pow(long long e) const {if (e < 0) return inv().pow(-e);ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;}ModInt inv() const {unsigned a = M, b = x; int y = 0, z = 1;for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }assert(a == 1U); return ModInt(y);}ModInt operator+() const { return *this; }ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }explicit operator bool() const { return x; }bool operator==(const ModInt &a) const { return (x == a.x); }bool operator!=(const ModInt &a) const { return (x != a.x); }friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }};////////////////////////////////////////////////////////////////////////////////constexpr unsigned MO = 998244353;using Mint = ModInt<MO>;constexpr int LIM_INV = 1010;Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];void prepare() {inv[1] = 1;for (int i = 2; i < LIM_INV; ++i) {inv[i] = -((Mint::M / i) * inv[Mint::M % i]);}fac[0] = invFac[0] = 1;for (int i = 1; i < LIM_INV; ++i) {fac[i] = fac[i - 1] * i;invFac[i] = invFac[i - 1] * inv[i];}}Mint binom(Int n, Int k) {if (n < 0) {if (k >= 0) {return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);} else if (n - k >= 0) {return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);} else {return 0;}} else {if (0 <= k && k <= n) {assert(n < LIM_INV);return fac[n] * invFac[k] * invFac[n - k];} else {return 0;}}}using P = pair<Mint, Mint>;P mul(const P &a, const P &b) {const Mint c2 = a.second * b.second;return P(a.first * b.first - c2, a.first * b.second + a.second * b.first - c2);}P power(P a, Int e) {P b(1, 0);for (; ; a = mul(a, a)) {if (e & 1) b = mul(b, a);if (!(e >>= 1)) return b;}}int main() {prepare();int N, M;for (; ~scanf("%d%d", &N, &M); ) {Mint ans = 0;for (int j = 0; j <= M; ++j) for (int k = 0; k <= M - j; ++k) {const int i = M - j - k;// (w^2)^j w^k exp((i + w j + w^2 k) x)P p(0, 0);p.first += i;p.second += j;p.first -= k;p.second -= k;p = power(p, N);switch ((2 * j + k) % 3) {case 0: break;case 1: p = mul(p, P(0, 1)); break;case 2: p = mul(p, P(-1, -1)); break;default: assert(false);}ans += invFac[i] * invFac[j] * invFac[k] * p.first;}ans *= fac[M];ans *= Mint(3).pow(-M);printf("%u\n", ans.x);}return 0;}