結果

問題 No.2514 Twelvefold Way Returns
ユーザー 👑 hos.lyrichos.lyric
提出日時 2023-10-20 21:31:25
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 19 ms / 3,000 ms
コード長 5,526 bytes
コンパイル時間 1,179 ms
コンパイル使用メモリ 112,328 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-20 17:32:28
合計ジャッジ時間 2,617 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 4 ms
5,376 KB
testcase_03 AC 3 ms
5,376 KB
testcase_04 AC 14 ms
5,376 KB
testcase_05 AC 12 ms
5,376 KB
testcase_06 AC 10 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 8 ms
5,376 KB
testcase_09 AC 8 ms
5,376 KB
testcase_10 AC 16 ms
5,376 KB
testcase_11 AC 3 ms
5,376 KB
testcase_12 AC 5 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 4 ms
5,376 KB
testcase_15 AC 8 ms
5,376 KB
testcase_16 AC 16 ms
5,376 KB
testcase_17 AC 11 ms
5,376 KB
testcase_18 AC 17 ms
5,376 KB
testcase_19 AC 16 ms
5,376 KB
testcase_20 AC 17 ms
5,376 KB
testcase_21 AC 17 ms
5,376 KB
testcase_22 AC 16 ms
5,376 KB
testcase_23 AC 6 ms
5,376 KB
testcase_24 AC 17 ms
5,376 KB
testcase_25 AC 9 ms
5,376 KB
testcase_26 AC 2 ms
5,376 KB
testcase_27 AC 17 ms
5,376 KB
testcase_28 AC 6 ms
5,376 KB
testcase_29 AC 5 ms
5,376 KB
testcase_30 AC 5 ms
5,376 KB
testcase_31 AC 6 ms
5,376 KB
testcase_32 AC 3 ms
5,376 KB
testcase_33 AC 1 ms
5,376 KB
testcase_34 AC 4 ms
5,376 KB
testcase_35 AC 13 ms
5,376 KB
testcase_36 AC 2 ms
5,376 KB
testcase_37 AC 1 ms
5,376 KB
testcase_38 AC 16 ms
5,376 KB
testcase_39 AC 19 ms
5,376 KB
testcase_40 AC 17 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;

constexpr int LIM_INV = 1010;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];

void prepare() {
  inv[1] = 1;
  for (int i = 2; i < LIM_INV; ++i) {
    inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
  }
  fac[0] = invFac[0] = 1;
  for (int i = 1; i < LIM_INV; ++i) {
    fac[i] = fac[i - 1] * i;
    invFac[i] = invFac[i - 1] * inv[i];
  }
}
Mint binom(Int n, Int k) {
  if (n < 0) {
    if (k >= 0) {
      return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);
    } else if (n - k >= 0) {
      return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);
    } else {
      return 0;
    }
  } else {
    if (0 <= k && k <= n) {
      assert(n < LIM_INV);
      return fac[n] * invFac[k] * invFac[n - k];
    } else {
      return 0;
    }
  }
}


using P = pair<Mint, Mint>;

P mul(const P &a, const P &b) {
  const Mint c2 = a.second * b.second;
  return P(a.first * b.first - c2, a.first * b.second + a.second * b.first - c2);
}
P power(P a, Int e) {
  P b(1, 0);
  for (; ; a = mul(a, a)) {
    if (e & 1) b = mul(b, a);
    if (!(e >>= 1)) return b;
  }
}

int main() {
  prepare();
  
  int N, M;
  for (; ~scanf("%d%d", &N, &M); ) {
    Mint ans = 0;
    for (int j = 0; j <= M; ++j) for (int k = 0; k <= M - j; ++k) {
      const int i = M - j - k;
      // (w^2)^j w^k exp((i + w j + w^2 k) x)
      P p(0, 0);
      p.first += i;
      p.second += j;
      p.first -= k;
      p.second -= k;
      p = power(p, N);
      switch ((2 * j + k) % 3) {
        case 0: break;
        case 1: p = mul(p, P(0, 1)); break;
        case 2: p = mul(p, P(-1, -1)); break;
        default: assert(false);
      }
      ans += invFac[i] * invFac[j] * invFac[k] * p.first;
    }
    ans *= fac[M];
    ans *= Mint(3).pow(-M);
    printf("%u\n", ans.x);
  }
  return 0;
}
0