結果

問題 No.2514 Twelvefold Way Returns
ユーザー hotman78
提出日時 2023-10-20 22:00:27
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 117 ms / 3,000 ms
コード長 25,345 bytes
コンパイル時間 11,665 ms
コンパイル使用メモリ 294,208 KB
最終ジャッジ日時 2025-02-17 09:25:54
ジャッジサーバーID
(参考情報)
judge3 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 38
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// author: hotman78
// date: 2023/10/20-22:00:17
// --- begin raw code -----------------
// #include"cpplib/util/template.hpp"
// #include"cpplib/math/ACL_modint998244353.hpp"
//
// int main(){
// lint n,m;
// cin>>n>>m;
// mint ans=0,ans2=0;
// auto mul=[&](pair<mint,mint>s,pair<mint,mint>t){
// return make_pair(
// s.first*t.first-s.second*t.second,
// s.second*t.first+s.first*t.second-s.second*t.second
// );
// };
// auto pow=[&](pair<mint,mint>x,lint n){
// pair<mint,mint>res={1,0};
// while(n){
// if(n&1)res=mul(res,x);
// x=mul(x,x);
// n>>=1;
// }
// return res;
// };
// rep(s,m+1)rep(t,m-s+1){
// lint u=m-s-t;
// // if(v)continue;
// auto tmp=pow(make_pair(s-u,t-u),n);
// tmp=mul(tmp,pow(make_pair(0,1),(2*t+u)));
// ans+=tmp.first*fact_inv(s)*fact_inv(t)*fact_inv(u);
// ans2+=tmp.second;
// }
// cout<<ans*fact(m)/mint(3).pow(m)<<endl;
// }
// --- end raw code -----------------
#line 2 "cpplib/util/template.hpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx2")
#include <bits/stdc++.h>
using namespace std;
#line 1 "cpplib/util/ioutil.hpp"
// template <class Head,class... Args>
// std::ostream& output(std::ostream& out,const Head& head,const Args&... args){
// out>>head;
// return output(head,args...);
// }
// template <class Head>
// std::ostream& output(std::ostream& out,const Head& head){
// out>>head;
// return out;
// }
template <typename T, typename E>
std::ostream &operator<<(std::ostream &out, std::pair<T, E> v) {
out << "(" << v.first << "," << v.second << ")";
return out;
}
// template <class... Args>
// ostream& operator<<(ostream& out,std::tuple<Args...>v){
// std::apply(output,v);
// return out;
// }
#line 11 "cpplib/util/template.hpp"
struct __INIT__ {
__INIT__() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
}
} __INIT__;
typedef long long lint;
constexpr long long INF = 1LL << 60;
constexpr int IINF = 1 << 30;
constexpr double EPS = 1e-10;
#ifndef REACTIVE
#define endl '\n';
#endif
typedef vector<lint> vec;
typedef vector<vector<lint>> mat;
typedef vector<vector<vector<lint>>> mat3;
typedef vector<string> svec;
typedef vector<vector<string>> smat;
template <typename T> using V = vector<T>;
template <typename T> using VV = V<V<T>>;
#define output(t) \
{ \
bool f = 0; \
for (auto val : (t)) { \
cout << (f ? " " : "") << val; \
f = 1; \
} \
cout << endl; \
}
#define output2(t) \
{ \
for (auto i : t) \
output(i); \
}
#define debug(t) \
{ \
bool f = 0; \
for (auto i : t) { \
cerr << (f ? " " : "") << i; \
f = 1; \
} \
cerr << endl; \
}
#define debug2(t) \
{ \
for (auto i : t) \
debug(i); \
}
#define loop(n) for (long long _ = 0; _ < (long long)(n); ++_)
#define _overload4(_1, _2, _3, _4, name, ...) name
#define __rep(i, a) repi(i, 0, a, 1)
#define _rep(i, a, b) repi(i, a, b, 1)
#define repi(i, a, b, c) \
for (long long i = (long long)(a); i < (long long)(b); i += c)
#define rep(...) _overload4(__VA_ARGS__, repi, _rep, __rep)(__VA_ARGS__)
#define _overload3_rev(_1, _2, _3, name, ...) name
#define _rep_rev(i, a) repi_rev(i, 0, a)
#define repi_rev(i, a, b) \
for (long long i = (long long)(b)-1; i >= (long long)(a); --i)
#define rrep(...) _overload3_rev(__VA_ARGS__, repi_rev, _rep_rev)(__VA_ARGS__)
#define all(n) begin(n), end(n)
template <typename T, typename E> bool chmin(T &s, const E &t) {
bool res = s > t;
s = min<T>(s, t);
return res;
}
template <typename T, typename E> bool chmax(T &s, const E &t) {
bool res = s < t;
s = max<T>(s, t);
return res;
}
const vector<lint> dx = {1, 0, -1, 0, 1, 1, -1, -1};
const vector<lint> dy = {0, 1, 0, -1, 1, -1, 1, -1};
#define SUM(v) accumulate(all(v), 0LL)
#if __cplusplus >= 201703L
template <typename T, typename... Args>
auto make_vector(T x, int arg, Args... args) {
if constexpr (sizeof...(args) == 0)
return vector<T>(arg, x);
else
return vector(arg, make_vector<T>(x, args...));
}
#endif
#define extrep(v, ...) for (auto v : __MAKE_MAT__({__VA_ARGS__}))
#define bit(n, a) ((n >> a) & 1)
vector<vector<long long>> __MAKE_MAT__(vector<long long> v) {
if (v.empty())
return vector<vector<long long>>(1, vector<long long>());
long long n = v.back();
v.pop_back();
vector<vector<long long>> ret;
vector<vector<long long>> tmp = __MAKE_MAT__(v);
for (auto e : tmp)
for (long long i = 0; i < n; ++i) {
ret.push_back(e);
ret.back().push_back(i);
}
return ret;
}
using graph = vector<vector<int>>;
template <typename T> using graph_w = vector<vector<pair<int, T>>>;
#if __cplusplus >= 201703L
constexpr inline long long powll(long long a, long long b) {
long long res = 1;
while (b--)
res *= a;
return res;
}
#endif
template <typename T, typename E>
pair<T, E> &operator+=(pair<T, E> &s, const pair<T, E> &t) {
s.first += t.first;
s.second += t.second;
return s;
}
template <typename T, typename E>
pair<T, E> &operator-=(pair<T, E> &s, const pair<T, E> &t) {
s.first -= t.first;
s.second -= t.second;
return s;
}
template <typename T, typename E>
pair<T, E> operator+(const pair<T, E> &s, const pair<T, E> &t) {
auto res = s;
return res += t;
}
template <typename T, typename E>
pair<T, E> operator-(const pair<T, E> &s, const pair<T, E> &t) {
auto res = s;
return res -= t;
}
#define BEGIN_STACK_EXTEND(size) \
void *stack_extend_memory_ = malloc(size); \
void *stack_extend_origin_memory_; \
char *stack_extend_dummy_memory_ = (char *)alloca( \
(1 + (int)(((long long)stack_extend_memory_) & 127)) * 16); \
*stack_extend_dummy_memory_ = 0; \
asm volatile("mov %%rsp, %%rbx\nmov %%rax, %%rsp" \
: "=b"(stack_extend_origin_memory_) \
: "a"((char *)stack_extend_memory_ + (size)-1024));
#define END_STACK_EXTEND \
asm volatile("mov %%rax, %%rsp" ::"a"(stack_extend_origin_memory_)); \
free(stack_extend_memory_);
int floor_pow(int n) { return n ? 31 - __builtin_clz(n) : 0; }
#line 2 "cpplib/math/ACL_modint998244353.hpp"
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0)
x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m)
: _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1)
return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1)
r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1)
return false;
if (n == 2 || n == 7 || n == 61)
return true;
if (n % 2 == 0)
return false;
long long d = n - 1;
while (d % 2 == 0)
d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0)
return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0)
m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2)
return 1;
if (m == 167772161)
return 3;
if (m == 469762049)
return 3;
if (m == 754974721)
return 11;
if (m == 998244353)
return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0)
x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok)
return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m)
break;
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t,
unsigned __int128>;
template <class T>
using is_integral =
typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_signed_int =
typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value, make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned =
typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)> * = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T> * = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0)
x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T> * = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint &operator++() {
_v++;
if (_v == umod())
_v = 0;
return *this;
}
mint &operator--() {
if (_v == 0)
_v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint &operator+=(const mint &rhs) {
_v += rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint &operator-=(const mint &rhs) {
_v -= rhs._v;
if (_v >= umod())
_v += umod();
return *this;
}
mint &operator*=(const mint &rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1)
r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint &lhs, const mint &rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint &lhs, const mint &rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint &lhs, const mint &rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint &lhs, const mint &rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint &lhs, const mint &rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint &lhs, const mint &rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T> * = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0)
x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T> * = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint &operator++() {
_v++;
if (_v == umod())
_v = 0;
return *this;
}
mint &operator--() {
if (_v == 0)
_v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint &operator+=(const mint &rhs) {
_v += rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint &operator-=(const mint &rhs) {
_v += mod() - rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint &operator*=(const mint &rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1)
r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint &lhs, const mint &rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint &lhs, const mint &rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint &lhs, const mint &rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint &lhs, const mint &rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint &lhs, const mint &rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint &lhs, const mint &rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using mint = atcoder::modint998244353;
#line 4 "cpplib/math/ACL_modint_base.hpp"
std::ostream &operator<<(std::ostream &lhs, const mint &rhs) noexcept {
lhs << rhs.val();
return lhs;
}
std::istream &operator>>(std::istream &lhs, mint &rhs) noexcept {
long long x;
lhs >> x;
rhs = x;
return lhs;
}
int MOD_NOW = -1;
int FACT_TABLE_SIZE = 0;
std::vector<mint> fact_table, fact_inv_table;
void update(int x) {
if (MOD_NOW != mint::mod() || FACT_TABLE_SIZE == 0) {
fact_table.assign(1, 1);
fact_inv_table.assign(1, 1);
FACT_TABLE_SIZE = 1;
MOD_NOW = mint::mod();
}
while (FACT_TABLE_SIZE <= x) {
fact_table.resize(FACT_TABLE_SIZE * 2);
fact_inv_table.resize(FACT_TABLE_SIZE * 2);
for (int i = FACT_TABLE_SIZE; i < FACT_TABLE_SIZE * 2; ++i) {
fact_table[i] = fact_table[i - 1] * i;
}
fact_inv_table[FACT_TABLE_SIZE * 2 - 1] =
fact_table[FACT_TABLE_SIZE * 2 - 1].inv();
for (int i = FACT_TABLE_SIZE * 2 - 2; i >= FACT_TABLE_SIZE; --i) {
fact_inv_table[i] = fact_inv_table[i + 1] * (i + 1);
}
FACT_TABLE_SIZE *= 2;
}
}
inline mint fact(int x) {
assert(x >= 0);
update(x);
return fact_table[x];
}
inline mint fact_inv(int x) {
assert(x >= 0);
update(x);
return fact_inv_table[x];
}
inline mint comb(int x, int y) {
if (x < 0 || x < y || y < 0)
return 0;
return fact(x) * fact_inv(y) * fact_inv(x - y);
}
inline mint perm(int x, int y) { return fact(x) * fact_inv(x - y); }
// xy
inline mint multi_comb(int x, int y) {
if (y == 0 && x >= 0)
return 1;
if (y < 0 || x <= 0)
return 0;
return comb(x + y - 1, y);
}
#line 3 "main.cpp"
int main() {
lint n, m;
cin >> n >> m;
mint ans = 0, ans2 = 0;
auto mul = [&](pair<mint, mint> s, pair<mint, mint> t) {
return make_pair(s.first * t.first - s.second * t.second,
s.second * t.first + s.first * t.second -
s.second * t.second);
};
auto pow = [&](pair<mint, mint> x, lint n) {
pair<mint, mint> res = {1, 0};
while (n) {
if (n & 1)
res = mul(res, x);
x = mul(x, x);
n >>= 1;
}
return res;
};
rep(s, m + 1) rep(t, m - s + 1) {
lint u = m - s - t;
// if(v)continue;
auto tmp = pow(make_pair(s - u, t - u), n);
tmp = mul(tmp, pow(make_pair(0, 1), (2 * t + u)));
ans += tmp.first * fact_inv(s) * fact_inv(t) * fact_inv(u);
ans2 += tmp.second;
}
cout << ans * fact(m) / mint(3).pow(m) << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0