結果

問題 No.2511 Mountain Sequence
ユーザー torisasami4
提出日時 2023-10-20 22:34:30
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 24 ms / 2,000 ms
コード長 7,754 bytes
コンパイル時間 5,462 ms
コンパイル使用メモリ 228,968 KB
最終ジャッジ日時 2025-02-17 10:17:50
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 32
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// #define _GLIBCXX_DEBUG
#pragma GCC optimize("O2,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define each(e, v) for (auto& e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T> void print(const vector<T>& v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T> bool chmax(T& x, const T& y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T> bool chmin(T& x, const T& y) {
return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using maxheap = std::priority_queue<T>;
template <typename T> int lb(const vector<T>& v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> int ub(const vector<T>& v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> void rearrange(vector<T>& v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
// __int128_t gcd(__int128_t a, __int128_t b) {
// if (a == 0)
// return b;
// if (b == 0)
// return a;
// __int128_t cnt = a % b;
// while (cnt != 0) {
// a = b;
// b = cnt;
// cnt = a % b;
// }
// return b;
// }
struct Union_Find_Tree {
vector<int> data;
const int n;
int cnt;
Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}
int root(int x) {
if (data[x] < 0) return x;
return data[x] = root(data[x]);
}
int operator[](int i) { return root(i); }
bool unite(int x, int y) {
x = root(x), y = root(y);
if (x == y) return false;
if (data[x] > data[y]) swap(x, y);
data[x] += data[y], data[y] = x;
cnt--;
return true;
}
int size(int x) { return -data[root(x)]; }
int count() { return cnt; };
bool same(int x, int y) { return root(x) == root(y); }
void clear() {
cnt = n;
fill(begin(data), end(data), -1);
}
};
template <int mod> struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int& operator+=(const Mod_Int& p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int& operator-=(const Mod_Int& p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int& operator*=(const Mod_Int& p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int& operator/=(const Mod_Int& p) {
*this *= p.inverse();
return *this;
}
Mod_Int& operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int& operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int& p) const { return x == p.x; }
bool operator!=(const Mod_Int& p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream& operator<<(ostream& os, const Mod_Int& p) {
return os << p.x;
}
friend istream& operator>>(istream& is, Mod_Int& p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
ll mpow2(ll x, ll n, ll mod) {
ll ans = 1;
x %= mod;
while (n != 0) {
if (n & 1) ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
ans %= mod;
return ans;
}
template <typename T> T modinv(T a, const T& m) {
T b = m, u = 1, v = 0;
while (b > 0) {
T t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return u >= 0 ? u % m : (m - (-u) % m) % m;
}
ll divide_int(ll a, ll b) {
if (b < 0) a = -a, b = -b;
return (a >= 0 ? a / b : (a - b + 1) / b);
}
// const int MOD = 1000000007;
const int MOD = 998244353;
using mint = Mod_Int<MOD>;
// ----- library -------
template <typename T>
struct Combination {
static vector<T> _fac, _ifac;
Combination() {}
static void init(int n) {
_fac.resize(n + 1), _ifac.resize(n + 1);
_fac[0] = 1;
for (int i = 1; i <= n; i++) _fac[i] = _fac[i - 1] * i;
_ifac[n] = _fac[n].inverse();
for (int i = n; i >= 1; i--) _ifac[i - 1] = _ifac[i] * i;
}
static T fac(int k) { return _fac[k]; }
static T ifac(int k) { return _ifac[k]; }
static T inv(int k) { return fac(k - 1) * ifac(k); }
static T P(int n, int k) {
if (k < 0 || n < k) return 0;
return fac(n) * ifac(n - k);
}
static T C(int n, int k) {
if (k < 0 || n < k) return 0;
return fac(n) * ifac(n - k) * ifac(k);
}
// n k
static T H(int n, int k) {
if (n < 0 || k < 0) return 0;
return k == 0 ? 1 : C(n + k - 1, k);
}
// n k 1
static T second_stirling_number(int n, int k) {
T ret = 0;
for (int i = 0; i <= k; i++) {
T tmp = C(k, i) * T(i).pow(n);
ret += ((k - i) & 1) ? -tmp : tmp;
}
return ret * ifac(k);
}
// n k
static T bell_number(int n, int k) {
if (n == 0) return 1;
k = min(k, n);
vector<T> pref(k + 1);
pref[0] = 1;
for (int i = 1; i <= k; i++) {
if (i & 1) {
pref[i] = pref[i - 1] - ifac(i);
} else {
pref[i] = pref[i - 1] + ifac(i);
}
}
T ret = 0;
for (int i = 1; i <= k; i++) ret += T(i).pow(n) * ifac(i) * pref[k - i];
return ret;
}
};
template <typename T>
vector<T> Combination<T>::_fac = vector<T>();
template <typename T>
vector<T> Combination<T>::_ifac = vector<T>();
// ----- library -------
int main() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(15);
int n, m;
cin >> n >> m;
using comb = Combination<mint>;
comb::init(1e6);
mint ans = 0;
rep(k, n) {
if (k * 2 >= n)
break;
int c = n - k;
ans += mint(2).pow(c - k - 1) * comb::C(m, c) * comb::C(c - 1, k);
}
cout << ans << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0