結果
問題 | No.2514 Twelvefold Way Returns |
ユーザー | shobonvip |
提出日時 | 2023-10-20 23:06:16 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 6,129 bytes |
コンパイル時間 | 4,339 ms |
コンパイル使用メモリ | 280,708 KB |
実行使用メモリ | 22,536 KB |
最終ジャッジ日時 | 2024-09-20 21:57:18 |
合計ジャッジ時間 | 11,588 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 153 ms
17,172 KB |
testcase_01 | AC | 392 ms
17,300 KB |
testcase_02 | AC | 1,515 ms
17,172 KB |
testcase_03 | AC | 556 ms
17,172 KB |
testcase_04 | TLE | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
ソースコード
#include<bits/stdc++.h> using namespace std; //* ATCODER #include<atcoder/all> using namespace atcoder; typedef modint998244353 mint; //*/ /* BOOST MULTIPRECISION #include<boost/multiprecision/cpp_int.hpp> using namespace boost::multiprecision; //*/ typedef long long ll; #define rep(i, s, n) for (int i = (int)(s); i < (int)(n); i++) #define rrep(i, s, n) for (int i = (int)(n)-1; i >= (int)(s); i--) template <typename T> bool chmin(T &a, const T &b) { if (a <= b) return false; a = b; return true; } template <typename T> bool chmax(T &a, const T &b) { if (a >= b) return false; a = b; return true; } template <typename T> T max(vector<T> &a){ assert(!a.empty()); T ret = a[0]; for (int i=0; i<(int)a.size(); i++) chmax(ret, a[i]); return ret; } template <typename T> T min(vector<T> &a){ assert(!a.empty()); T ret = a[0]; for (int i=0; i<(int)a.size(); i++) chmin(ret, a[i]); return ret; } template <typename T> T sum(vector<T> &a){ T ret = 0; for (int i=0; i<(int)a.size(); i++) ret += a[i]; return ret; } int calc(int a, int b, int c){ return a*a*a + b*b*b + c*c*c; } //defmodfact const int COMinitMAX = 998244; mint fact[COMinitMAX+1], factinv[COMinitMAX+1]; void modfact(){ fact[0] = 1; for (int i=1; i<=COMinitMAX; i++){ fact[i] = fact[i-1] * i; } factinv[COMinitMAX] = fact[COMinitMAX].inv(); for (int i=COMinitMAX-1; i>=0; i--){ factinv[i] = factinv[i+1] * (i+1); } } mint cmb(int a, int b){ if (a<b || b<0) return mint(0); return fact[a]*factinv[b]*factinv[a-b]; } //-------- vector<mint> poly_inv(vector<mint> &a, int M = -314159265){ if (M == -314159265) M = (int)a.size(); else if (M <= 0) return {}; int n = a.size(); mint r = a[0].pow((ll)(mint::mod())-2); int m = 1; vector<mint> res = {r}; while (m < M){ vector<mint> f = a; f.resize(2 * m); vector<mint> g = res; g.resize(2 * m); internal::butterfly(f); internal::butterfly(g); for (int i=0; i<2*m; i++){ f[i] = f[i] * g[i]; } internal::butterfly_inv(f); for (int i=0; i<m; i++){ f[i] = f[i + m]; } for (int i=0; i<m; i++){ f[i + m] = 0; } internal::butterfly(f); for (int i=0; i<2*m; i++){ f[i] = f[i] * g[i]; } internal::butterfly_inv(f); mint iz = mint(2*m).inv(); iz = -iz * iz; for (int i=0; i<m; i++){ f[i] = f[i] * iz; } res.insert(res.end(), f.begin(), f.begin()+m); m <<= 1; } res.resize(M); return res; } vector<mint> poly_log(vector<mint> &a, int M = -314159265){ if (M == -314159265) M = (int)a.size(); else if (M <= 0) return {}; int n = a.size(); if (n == 1) return vector<mint>(M, 0); vector<mint> b(n-1); for (int i=0; i<n-1; i++){ b[i] = a[i+1] * (i+1); } vector<mint> t = convolution<mint>(b, poly_inv(a, M)); vector<mint> ret(M); for (int i=0; i<M-1; i++){ ret[i+1] = t[i] * factinv[i+1] * fact[i]; } return ret; } vector<mint> poly_exp(vector<mint> &a, int M = -314159265){ if (M == -314159265) M = (int)a.size(); else if (M <= 0) return {}; int n = a.size(); int m = 1; vector<mint> res = {1}; while (m < M){ vector<mint> f(2*m); for (int i=0; i<min(n, 2*m); i++) f[i] = a[i]; vector<mint> v = poly_log(res, 2*m); vector<mint> w(2*m); for (int i=0; i<2*m; i++) w[i] = f[i] - v[i]; w[0] += 1; vector<mint> g = convolution<mint>(res, w); res.insert(res.end(), g.begin()+m, g.begin()+2*m); m <<= 1; } res.resize(M); return res; } vector<mint> poly_pow_nonzero(vector<mint> &a, ll m, ll l){ int n = a.size(); mint bais = a[0].pow(m); mint invs; if (a[0].val() == 0) invs = 0; else invs = a[0].inv(); vector<mint> r(n); for (int i=0; i<n; i++) r[i] = a[i] * invs; r = poly_log(r, l); for (int i=0; i<l; i++) r[i] = r[i] * m; r = poly_exp(r, l); for (int i=0; i<l; i++) r[i] = r[i] * bais; return r; } vector<mint> poly_pow(vector<mint> &a, ll m, ll l){ int n = a.size(); int ind = 0; for (int i=0; i<n; i++){ if (a[i].val() != 0){ ind = i; break; } } ll g = min(m, (ll)3141592653); if (g*ind >= l){ return vector<mint>(l, 0); } vector<mint> ret(g*ind); vector<mint> b(n-ind); for (int i=0; i<n-ind; i++) b[i] = a[i+ind]; vector<mint> tmp; if (l-g*ind > 0) tmp = poly_pow_nonzero(b, m, l-g*ind); else tmp = {}; ret.insert(ret.end(), tmp.begin(), tmp.end()); return ret; } vector<mint> BerlekampMassey(const vector<mint> &s) { const int N = (int)s.size(); vector<mint> b, c; b.reserve(N + 1); c.reserve(N + 1); b.push_back(mint(1)); c.push_back(mint(1)); mint y = mint(1); for (int ed = 1; ed <= N; ed++) { int l = int(c.size()), m = int(b.size()); mint x = 0; for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i]; b.emplace_back(mint(0)); m++; if (x == mint(0)) continue; mint freq = x / y; if (l < m) { auto tmp = c; c.insert(begin(c), m - l, mint(0)); for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i]; b = tmp; y = x; } else { for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i]; } } reverse(begin(c), end(c)); return c; } mint bostan_mori(ll n, vector<mint> p, vector<mint> q){ assert(p.size() < q.size()); while (n > 0){ vector<mint> qi((int)q.size()); for (int i=0; i<(int)q.size(); i++){ if (i%2==0) qi[i] = q[i]; else qi[i] = -q[i]; } vector<mint> qq = convolution<mint>(q, qi); q.resize(((int)qq.size()+1)/2); for (int i=0; i<((int)qq.size()+1)/2; i++){ q[i] = qq[2*i]; } vector<mint> pp = convolution<mint>(p, qi); if (n%2==0){ p.resize(((int)pp.size()+1)/2); for (int i=0; i<((int)pp.size()+1)/2; i++){ p[i] = pp[2*i]; } }else{ p.resize((int)pp.size()/2); for (int i=0; i<(int)pp.size()/2; i++){ p[i] = pp[2*i+1]; } } n/=2; } return p[0]*q[0].inv(); } int main(){ modfact(); int n, m; cin >> n >> m; int mx = 100000; vector<mint> f(mx+1); rep(i,0,mx+1){ if (i % 3 == 1){ f[i] = factinv[i]; } } vector<mint> g = poly_pow(f, m, mx+1); rep(i,0,mx+1){ g[i] *= fact[i]; } vector<mint> bm = BerlekampMassey(g); g.resize((int)bm.size() - 1); vector<mint> h = convolution<mint>(g, bm); h.resize((int)bm.size() - 1); cout << bostan_mori(n, h, bm).val() << '\n'; }