結果
問題 | No.2523 Trick Flower |
ユーザー |
![]() |
提出日時 | 2023-10-27 22:53:20 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 170 ms / 4,000 ms |
コード長 | 28,257 bytes |
コンパイル時間 | 3,742 ms |
コンパイル使用メモリ | 234,936 KB |
実行使用メモリ | 24,380 KB |
最終ジャッジ日時 | 2024-09-25 14:54:45 |
合計ジャッジ時間 | 7,505 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 31 |
ソースコード
#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <chrono>#include <cmath>#include <complex>#include <deque>#include <forward_list>#include <fstream>#include <functional>#include <iomanip>#include <ios>#include <iostream>#include <limits>#include <list>#include <map>#include <memory>#include <numeric>#include <optional>#include <queue>#include <random>#include <set>#include <sstream>#include <stack>#include <string>#include <tuple>#include <type_traits>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using lint = long long;using pint = pair<int, int>;using plint = pair<lint, lint>;struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;#define ALL(x) (x).begin(), (x).end()#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)#define REP(i, n) FOR(i,0,n)#define IREP(i, n) IFOR(i,0,n)template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os <<']'; return os; }template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v<< ','; os << ']'; return os; }template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);},tpl); return is; }template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) {((os << args << ','), ...);}, tpl); return os << ')'; }template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os<< v << ','; os << '}'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os <<']'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}';return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os <<'}'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v <<','; os << '}'; return os; }template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for(auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }#ifdef HITONANODE_LOCALconst string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET<< std::endl#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " <<__FILE__ << COLOR_RESET << std::endl : std::cerr)#else#define dbg(x) ((void)0)#define dbgif(cond, x) ((void)0)#endif#include <algorithm>#include <cassert>#include <deque>#include <fstream>#include <functional>#include <limits>#include <queue>#include <string>#include <tuple>#include <utility>#include <vector>template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1>struct shortest_path {int V, E;bool single_positive_weight;T wmin, wmax;std::vector<std::pair<int, T>> tos;std::vector<int> head;std::vector<std::tuple<int, int, T>> edges;void build_() {if (int(tos.size()) == E and int(head.size()) == V + 1) return;tos.resize(E);head.assign(V + 1, 0);for (const auto &e : edges) ++head[std::get<0>(e) + 1];for (int i = 0; i < V; ++i) head[i + 1] += head[i];auto cur = head;for (const auto &e : edges) {tos[cur[std::get<0>(e)]++] = std::make_pair(std::get<1>(e), std::get<2>(e));}}shortest_path(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0) {}void add_edge(int s, int t, T w) {assert(0 <= s and s < V);assert(0 <= t and t < V);edges.emplace_back(s, t, w);++E;if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;wmin = std::min(wmin, w);wmax = std::max(wmax, w);}void add_bi_edge(int u, int v, T w) {add_edge(u, v, w);add_edge(v, u, w);}std::vector<T> dist;std::vector<int> prev;// Dijkstra algorithm// - Requirement: wmin >= 0// - Complexity: O(E log E)using Pque = std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>,std::greater<std::pair<T, int>>>;template <class Heap = Pque> void dijkstra(int s, int t = INVALID) {assert(0 <= s and s < V);build_();dist.assign(V, INF);prev.assign(V, INVALID);dist[s] = 0;Heap pq;pq.emplace(0, s);while (!pq.empty()) {T d;int v;std::tie(d, v) = pq.top();pq.pop();if (t == v) return;if (dist[v] < d) continue;for (int e = head[v]; e < head[v + 1]; ++e) {const auto &nx = tos[e];T dnx = d + nx.second;if (dist[nx.first] > dnx) {dist[nx.first] = dnx, prev[nx.first] = v;pq.emplace(dnx, nx.first);}}}}// Dijkstra algorithm// - Requirement: wmin >= 0// - Complexity: O(V^2 + E)void dijkstra_vquad(int s, int t = INVALID) {assert(0 <= s and s < V);build_();dist.assign(V, INF);prev.assign(V, INVALID);dist[s] = 0;std::vector<char> fixed(V, false);while (true) {int r = INVALID;T dr = INF;for (int i = 0; i < V; i++) {if (!fixed[i] and dist[i] < dr) r = i, dr = dist[i];}if (r == INVALID or r == t) break;fixed[r] = true;int nxt;T dx;for (int e = head[r]; e < head[r + 1]; ++e) {std::tie(nxt, dx) = tos[e];if (dist[nxt] > dist[r] + dx) dist[nxt] = dist[r] + dx, prev[nxt] = r;}}}// Bellman-Ford algorithm// - Requirement: no negative loop// - Complexity: O(VE)bool bellman_ford(int s, int nb_loop) {assert(0 <= s and s < V);build_();dist.assign(V, INF), prev.assign(V, INVALID);dist[s] = 0;for (int l = 0; l < nb_loop; l++) {bool upd = false;for (int v = 0; v < V; v++) {if (dist[v] == INF) continue;for (int e = head[v]; e < head[v + 1]; ++e) {const auto &nx = tos[e];T dnx = dist[v] + nx.second;if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true;}}if (!upd) return true;}return false;}// Bellman-ford algorithm using deque// - Requirement: no negative loop// - Complexity: O(VE)void spfa(int s) {assert(0 <= s and s < V);build_();dist.assign(V, INF);prev.assign(V, INVALID);dist[s] = 0;std::deque<int> q;std::vector<char> in_queue(V);q.push_back(s), in_queue[s] = 1;while (!q.empty()) {int now = q.front();q.pop_front(), in_queue[now] = 0;for (int e = head[now]; e < head[now + 1]; ++e) {const auto &nx = tos[e];T dnx = dist[now] + nx.second;int nxt = nx.first;if (dist[nxt] > dnx) {dist[nxt] = dnx;if (!in_queue[nxt]) {if (q.size() and dnx < dist[q.front()]) { // Small label first optimizationq.push_front(nxt);} else {q.push_back(nxt);}prev[nxt] = now, in_queue[nxt] = 1;}}}}}// 01-BFS// - Requirement: all weights must be 0 or w (positive constant).// - Complexity: O(V + E)void zero_one_bfs(int s, int t = INVALID) {assert(0 <= s and s < V);build_();dist.assign(V, INF), prev.assign(V, INVALID);dist[s] = 0;std::vector<int> q(V * 4);int ql = V * 2, qr = V * 2;q[qr++] = s;while (ql < qr) {int v = q[ql++];if (v == t) return;for (int e = head[v]; e < head[v + 1]; ++e) {const auto &nx = tos[e];T dnx = dist[v] + nx.second;if (dist[nx.first] > dnx) {dist[nx.first] = dnx, prev[nx.first] = v;if (nx.second) {q[qr++] = nx.first;} else {q[--ql] = nx.first;}}}}}// Dial's algorithm// - Requirement: wmin >= 0// - Complexity: O(wmax * V + E)void dial(int s, int t = INVALID) {assert(0 <= s and s < V);build_();dist.assign(V, INF), prev.assign(V, INVALID);dist[s] = 0;std::vector<std::vector<std::pair<int, T>>> q(wmax + 1);q[0].emplace_back(s, dist[s]);int ninq = 1;int cur = 0;T dcur = 0;for (; ninq; ++cur, ++dcur) {if (cur == wmax + 1) cur = 0;while (!q[cur].empty()) {int v = q[cur].back().first;T dnow = q[cur].back().second;q[cur].pop_back(), --ninq;if (v == t) return;if (dist[v] < dnow) continue;for (int e = head[v]; e < head[v + 1]; ++e) {const auto &nx = tos[e];T dnx = dist[v] + nx.second;if (dist[nx.first] > dnx) {dist[nx.first] = dnx, prev[nx.first] = v;int nxtcur = cur + int(nx.second);if (nxtcur >= int(q.size())) nxtcur -= q.size();q[nxtcur].emplace_back(nx.first, dnx), ++ninq;}}}}}// Solver for DAG// - Requirement: graph is DAG// - Complexity: O(V + E)bool dag_solver(int s) {assert(0 <= s and s < V);build_();dist.assign(V, INF), prev.assign(V, INVALID);dist[s] = 0;std::vector<int> indeg(V, 0);std::vector<int> q(V * 2);int ql = 0, qr = 0;q[qr++] = s;while (ql < qr) {int now = q[ql++];for (int e = head[now]; e < head[now + 1]; ++e) {const auto &nx = tos[e];++indeg[nx.first];if (indeg[nx.first] == 1) q[qr++] = nx.first;}}ql = qr = 0;q[qr++] = s;while (ql < qr) {int now = q[ql++];for (int e = head[now]; e < head[now + 1]; ++e) {const auto &nx = tos[e];--indeg[nx.first];if (dist[nx.first] > dist[now] + nx.second)dist[nx.first] = dist[now] + nx.second, prev[nx.first] = now;if (indeg[nx.first] == 0) q[qr++] = nx.first;}}return *max_element(indeg.begin(), indeg.end()) == 0;}// Retrieve a sequence of vertex ids that represents shortest path [s, ..., goal]// If not reachable to goal, return {}std::vector<int> retrieve_path(int goal) const {assert(int(prev.size()) == V);assert(0 <= goal and goal < V);if (dist[goal] == INF) return {};std::vector<int> ret{goal};while (prev[goal] != INVALID) {goal = prev[goal];ret.push_back(goal);}std::reverse(ret.begin(), ret.end());return ret;}void solve(int s, int t = INVALID) {if (wmin >= 0) {if (single_positive_weight) {zero_one_bfs(s, t);} else if (wmax <= 10) {dial(s, t);} else {if ((long long)V * V < (E << 4)) {dijkstra_vquad(s, t);} else {dijkstra(s, t);}}} else {bellman_ford(s, V);}}// Warshall-Floyd algorithm// - Requirement: no negative loop// - Complexity: O(E + V^3)std::vector<std::vector<T>> floyd_warshall() {build_();std::vector<std::vector<T>> dist2d(V, std::vector<T>(V, INF));for (int i = 0; i < V; i++) {dist2d[i][i] = 0;for (const auto &e : edges) {int s = std::get<0>(e), t = std::get<1>(e);dist2d[s][t] = std::min(dist2d[s][t], std::get<2>(e));}}for (int k = 0; k < V; k++) {for (int i = 0; i < V; i++) {if (dist2d[i][k] == INF) continue;for (int j = 0; j < V; j++) {if (dist2d[k][j] == INF) continue;dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);}}}return dist2d;}void to_dot(std::string filename = "shortest_path") const {std::ofstream ss(filename + ".DOT");ss << "digraph{\n";build_();for (int i = 0; i < V; i++) {for (int e = head[i]; e < head[i + 1]; ++e) {ss << i << "->" << tos[e].first << "[label=" << tos[e].second << "];\n";}}ss << "}\n";ss.close();return;}};#include <algorithm>#include <cassert>#include <functional>#include <queue>#include <stack>#include <utility>#include <vector>// Heavy-Light Decomposition of trees// Based on http://beet-aizu.hatenablog.com/entry/2017/12/12/235950struct HeavyLightDecomposition {int V;int k;int nb_heavy_path;std::vector<std::vector<int>> e;std::vector<int> par; // par[i] = parent of vertex i (Default: -1)std::vector<int> depth; // depth[i] = distance between root and vertex istd::vector<int> subtree_sz; // subtree_sz[i] = size of subtree whose root is istd::vector<int> heavy_child; // heavy_child[i] = child of vertex i on heavy path (Default: -1)std::vector<int> tree_id; // tree_id[i] = id of tree vertex i belongs tostd::vector<int> aligned_id,aligned_id_inv; // aligned_id[i] = aligned id for vertex i (consecutive on heavy edges)std::vector<int> head; // head[i] = id of vertex on heavy path of vertex i, nearest to rootstd::vector<int> head_ids; // consist of head vertex id'sstd::vector<int> heavy_path_id; // heavy_path_id[i] = heavy_path_id for vertex [i]HeavyLightDecomposition(int sz = 0): V(sz), k(0), nb_heavy_path(0), e(sz), par(sz), depth(sz), subtree_sz(sz), heavy_child(sz),tree_id(sz, -1), aligned_id(sz), aligned_id_inv(sz), head(sz), heavy_path_id(sz, -1) {}void add_edge(int u, int v) {e[u].emplace_back(v);e[v].emplace_back(u);}void _build_dfs(int root) {std::stack<std::pair<int, int>> st;par[root] = -1;depth[root] = 0;st.emplace(root, 0);while (!st.empty()) {int now = st.top().first;int &i = st.top().second;if (i < (int)e[now].size()) {int nxt = e[now][i++];if (nxt == par[now]) continue;par[nxt] = now;depth[nxt] = depth[now] + 1;st.emplace(nxt, 0);} else {st.pop();int max_sub_sz = 0;subtree_sz[now] = 1;heavy_child[now] = -1;for (auto nxt : e[now]) {if (nxt == par[now]) continue;subtree_sz[now] += subtree_sz[nxt];if (max_sub_sz < subtree_sz[nxt])max_sub_sz = subtree_sz[nxt], heavy_child[now] = nxt;}}}}void _build_bfs(int root, int tree_id_now) {std::queue<int> q({root});while (!q.empty()) {int h = q.front();q.pop();head_ids.emplace_back(h);for (int now = h; now != -1; now = heavy_child[now]) {tree_id[now] = tree_id_now;aligned_id[now] = k++;aligned_id_inv[aligned_id[now]] = now;heavy_path_id[now] = nb_heavy_path;head[now] = h;for (int nxt : e[now])if (nxt != par[now] and nxt != heavy_child[now]) q.push(nxt);}nb_heavy_path++;}}void build(std::vector<int> roots = {0}) {int tree_id_now = 0;for (auto r : roots) _build_dfs(r), _build_bfs(r, tree_id_now++);}template <class T> std::vector<T> segtree_rearrange(const std::vector<T> &data) const {assert(int(data.size()) == V);std::vector<T> ret;ret.reserve(V);for (int i = 0; i < V; i++) ret.emplace_back(data[aligned_id_inv[i]]);return ret;}// query for vertices on path [u, v] (INCLUSIVE)voidfor_each_vertex(int u, int v, const std::function<void(int ancestor, int descendant)> &f) const {while (true) {if (aligned_id[u] > aligned_id[v]) std::swap(u, v);f(std::max(aligned_id[head[v]], aligned_id[u]), aligned_id[v]);if (head[u] == head[v]) break;v = par[head[v]];}}void for_each_vertex_noncommutative(int from, int to, const std::function<void(int ancestor, int descendant)> &fup,const std::function<void(int ancestor, int descendant)> &fdown) const {int u = from, v = to;const int lca = lowest_common_ancestor(u, v), dlca = depth[lca];while (u >= 0 and depth[u] > dlca) {const int p = (depth[head[u]] > dlca ? head[u] : lca);fup(aligned_id[p] + (p == lca), aligned_id[u]), u = par[p];}static std::vector<std::pair<int, int>> lrs;int sz = 0;while (v >= 0 and depth[v] >= dlca) {const int p = (depth[head[v]] >= dlca ? head[v] : lca);if (int(lrs.size()) == sz) lrs.emplace_back(0, 0);lrs.at(sz++) = {p, v}, v = par.at(p);}while (sz--) fdown(aligned_id[lrs.at(sz).first], aligned_id[lrs.at(sz).second]);}// query for edges on path [u, v]void for_each_edge(int u, int v, const std::function<void(int, int)> &f) const {while (true) {if (aligned_id[u] > aligned_id[v]) std::swap(u, v);if (head[u] != head[v]) {f(aligned_id[head[v]], aligned_id[v]);v = par[head[v]];} else {if (u != v) f(aligned_id[u] + 1, aligned_id[v]);break;}}}// lowest_common_ancestor: O(log V)int lowest_common_ancestor(int u, int v) const {assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0);while (true) {if (aligned_id[u] > aligned_id[v]) std::swap(u, v);if (head[u] == head[v]) return u;v = par[head[v]];}}int distance(int u, int v) const {assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0);return depth[u] + depth[v] - 2 * depth[lowest_common_ancestor(u, v)];}// Level ancestor, O(log V)// if k-th parent is out of range, return -1int kth_parent(int v, int k) const {if (k < 0) return -1;while (v >= 0) {int h = head.at(v), len = depth.at(v) - depth.at(h);if (k <= len) return aligned_id_inv.at(aligned_id.at(v) - k);k -= len + 1, v = par.at(h);}return -1;}// Jump on tree, O(log V)int s_to_t_by_k_steps(int s, int t, int k) const {if (k < 0) return -1;if (k == 0) return s;int lca = lowest_common_ancestor(s, t);if (k <= depth.at(s) - depth.at(lca)) return kth_parent(s, k);return kth_parent(t, depth.at(s) + depth.at(t) - depth.at(lca) * 2 - k);}};// UnionFind Tree (0-indexed), based on size of each disjoint setstruct UnionFind {std::vector<int> par, cou;UnionFind(int N = 0) : par(N), cou(N, 1) { iota(par.begin(), par.end(), 0); }int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); }bool unite(int x, int y) {x = find(x), y = find(y);if (x == y) return false;if (cou[x] < cou[y]) std::swap(x, y);par[y] = x, cou[x] += cou[y];return true;}int count(int x) { return cou[find(x)]; }bool same(int x, int y) { return find(x) == find(y); }std::vector<std::vector<int>> groups() {std::vector<std::vector<int>> ret(par.size());for (int i = 0; i < int(par.size()); ++i) ret[find(i)].push_back(i);ret.erase(std::remove_if(ret.begin(), ret.end(),[&](const std::vector<int> &v) { return v.empty(); }),ret.end());return ret;}};int main() {vector<lint> Anew, Bnew;int R;vector<int> pars;vector<int> vsord;{int N;cin >> N;vector<lint> A(N), B(N), C(N);cin >> A >> B >> C;// dbg(make_tuple(N, A, B, C));REP(i, N) C.at(i)--;UnionFind ufinit(N);HeavyLightDecomposition hld(N);vector<pint> loop_es;REP(i, N) {const int j = C.at(i);if (ufinit.unite(i, j)) {hld.add_edge(i, j);} else {loop_es.emplace_back(i, j);}}vector<int> initrs;REP(i, N) if (ufinit.find(i) == i) initrs.push_back(i);hld.build(initrs);UnionFind uf(N);for (auto [a, b] : loop_es) {uf.unite(a, b);while (a != b) {// if (a < 0) break;// if (b < 0) break;if (hld.depth.at(a) > hld.depth.at(b)) {int j = hld.par.at(a);uf.unite(a, j);a = j;} else {int j = hld.par.at(b);uf.unite(b, j);b = j;}}}vector<int> rs;REP(i, N) if (uf.find(i) == i) rs.push_back(i);R = rs.size();Anew.assign(R, 0), Bnew.assign(R, 0);REP(i, N) {Anew.at(arglb(rs, uf.find(i))) += A.at(i);Bnew.at(arglb(rs, uf.find(i))) += B.at(i);}pars.assign(R, -1);shortest_path<int> sp(R + 1);REP(i, N) {int p = arglb(rs, uf.find(C.at(i)));int c = arglb(rs, uf.find(i));dbg(make_tuple(p, c));if (p != c) {sp.add_edge(p, c, 1);pars.at(c) = p;} else {sp.add_edge(R, c, 0);}}sp.solve(R);// dbg(sp.dist);vsord.resize(R);REP(r, R) vsord.at(r) = r;sort(ALL(vsord), [&](int i, int j) { return sp.dist.at(i) > sp.dist.at(j); });dbg(vsord);}lint ok = 0, ng = accumulate(ALL(Anew), 0LL) / max(1LL, accumulate(ALL(Bnew), 0LL)) + 1;// dbg(ng);while (ng > ok + 1) {const auto c = (ok + ng) / 2;vector<lint> req(R);REP(r, R) req.at(r) = Bnew.at(r) * c;// dbg(make_tuple(c, req, Bnew));bool failure = false;for (int v : vsord) {req.at(v) -= Anew.at(v);if (req.at(v) > 0) {int p = pars.at(v);if (p < 0) {failure = true;break;} else {req.at(p) += req.at(v);}}}(failure ? ng : ok) = c;}cout << ok << '\n';}