結果

問題 No.2523 Trick Flower
ユーザー hitonanodehitonanode
提出日時 2023-10-27 22:53:20
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 170 ms / 4,000 ms
コード長 28,257 bytes
コンパイル時間 3,742 ms
コンパイル使用メモリ 234,936 KB
実行使用メモリ 24,380 KB
最終ジャッジ日時 2024-09-25 14:54:45
合計ジャッジ時間 7,505 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 3 ms
5,376 KB
testcase_09 AC 3 ms
5,376 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 3 ms
6,940 KB
testcase_12 AC 2 ms
6,948 KB
testcase_13 AC 3 ms
6,940 KB
testcase_14 AC 3 ms
6,940 KB
testcase_15 AC 167 ms
23,360 KB
testcase_16 AC 170 ms
23,424 KB
testcase_17 AC 84 ms
24,380 KB
testcase_18 AC 89 ms
22,180 KB
testcase_19 AC 146 ms
23,372 KB
testcase_20 AC 144 ms
23,232 KB
testcase_21 AC 156 ms
23,360 KB
testcase_22 AC 144 ms
23,364 KB
testcase_23 AC 142 ms
23,356 KB
testcase_24 AC 77 ms
15,104 KB
testcase_25 AC 130 ms
21,220 KB
testcase_26 AC 118 ms
20,364 KB
testcase_27 AC 133 ms
22,220 KB
testcase_28 AC 114 ms
19,344 KB
testcase_29 AC 25 ms
7,040 KB
testcase_30 AC 106 ms
17,032 KB
testcase_31 AC 7 ms
6,940 KB
testcase_32 AC 53 ms
11,484 KB
testcase_33 AC 145 ms
23,148 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif

#include <algorithm>
#include <cassert>
#include <deque>
#include <fstream>
#include <functional>
#include <limits>
#include <queue>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1>
struct shortest_path {
    int V, E;
    bool single_positive_weight;
    T wmin, wmax;

    std::vector<std::pair<int, T>> tos;
    std::vector<int> head;
    std::vector<std::tuple<int, int, T>> edges;

    void build_() {
        if (int(tos.size()) == E and int(head.size()) == V + 1) return;
        tos.resize(E);
        head.assign(V + 1, 0);
        for (const auto &e : edges) ++head[std::get<0>(e) + 1];
        for (int i = 0; i < V; ++i) head[i + 1] += head[i];
        auto cur = head;
        for (const auto &e : edges) {
            tos[cur[std::get<0>(e)]++] = std::make_pair(std::get<1>(e), std::get<2>(e));
        }
    }

    shortest_path(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0) {}
    void add_edge(int s, int t, T w) {
        assert(0 <= s and s < V);
        assert(0 <= t and t < V);
        edges.emplace_back(s, t, w);
        ++E;
        if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;
        wmin = std::min(wmin, w);
        wmax = std::max(wmax, w);
    }

    void add_bi_edge(int u, int v, T w) {
        add_edge(u, v, w);
        add_edge(v, u, w);
    }

    std::vector<T> dist;
    std::vector<int> prev;

    // Dijkstra algorithm
    // - Requirement: wmin >= 0
    // - Complexity: O(E log E)
    using Pque = std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>,
                                     std::greater<std::pair<T, int>>>;
    template <class Heap = Pque> void dijkstra(int s, int t = INVALID) {
        assert(0 <= s and s < V);
        build_();
        dist.assign(V, INF);
        prev.assign(V, INVALID);
        dist[s] = 0;
        Heap pq;
        pq.emplace(0, s);
        while (!pq.empty()) {
            T d;
            int v;
            std::tie(d, v) = pq.top();
            pq.pop();
            if (t == v) return;
            if (dist[v] < d) continue;
            for (int e = head[v]; e < head[v + 1]; ++e) {
                const auto &nx = tos[e];
                T dnx = d + nx.second;
                if (dist[nx.first] > dnx) {
                    dist[nx.first] = dnx, prev[nx.first] = v;
                    pq.emplace(dnx, nx.first);
                }
            }
        }
    }

    // Dijkstra algorithm
    // - Requirement: wmin >= 0
    // - Complexity: O(V^2 + E)
    void dijkstra_vquad(int s, int t = INVALID) {
        assert(0 <= s and s < V);
        build_();
        dist.assign(V, INF);
        prev.assign(V, INVALID);
        dist[s] = 0;
        std::vector<char> fixed(V, false);
        while (true) {
            int r = INVALID;
            T dr = INF;
            for (int i = 0; i < V; i++) {
                if (!fixed[i] and dist[i] < dr) r = i, dr = dist[i];
            }
            if (r == INVALID or r == t) break;
            fixed[r] = true;
            int nxt;
            T dx;
            for (int e = head[r]; e < head[r + 1]; ++e) {
                std::tie(nxt, dx) = tos[e];
                if (dist[nxt] > dist[r] + dx) dist[nxt] = dist[r] + dx, prev[nxt] = r;
            }
        }
    }

    // Bellman-Ford algorithm
    // - Requirement: no negative loop
    // - Complexity: O(VE)
    bool bellman_ford(int s, int nb_loop) {
        assert(0 <= s and s < V);
        build_();
        dist.assign(V, INF), prev.assign(V, INVALID);
        dist[s] = 0;
        for (int l = 0; l < nb_loop; l++) {
            bool upd = false;
            for (int v = 0; v < V; v++) {
                if (dist[v] == INF) continue;
                for (int e = head[v]; e < head[v + 1]; ++e) {
                    const auto &nx = tos[e];
                    T dnx = dist[v] + nx.second;
                    if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true;
                }
            }
            if (!upd) return true;
        }
        return false;
    }

    // Bellman-ford algorithm using deque
    // - Requirement: no negative loop
    // - Complexity: O(VE)
    void spfa(int s) {
        assert(0 <= s and s < V);
        build_();
        dist.assign(V, INF);
        prev.assign(V, INVALID);
        dist[s] = 0;
        std::deque<int> q;
        std::vector<char> in_queue(V);
        q.push_back(s), in_queue[s] = 1;
        while (!q.empty()) {
            int now = q.front();
            q.pop_front(), in_queue[now] = 0;
            for (int e = head[now]; e < head[now + 1]; ++e) {
                const auto &nx = tos[e];
                T dnx = dist[now] + nx.second;
                int nxt = nx.first;
                if (dist[nxt] > dnx) {
                    dist[nxt] = dnx;
                    if (!in_queue[nxt]) {
                        if (q.size() and dnx < dist[q.front()]) { // Small label first optimization
                            q.push_front(nxt);
                        } else {
                            q.push_back(nxt);
                        }
                        prev[nxt] = now, in_queue[nxt] = 1;
                    }
                }
            }
        }
    }

    // 01-BFS
    // - Requirement: all weights must be 0 or w (positive constant).
    // - Complexity: O(V + E)
    void zero_one_bfs(int s, int t = INVALID) {
        assert(0 <= s and s < V);
        build_();
        dist.assign(V, INF), prev.assign(V, INVALID);
        dist[s] = 0;
        std::vector<int> q(V * 4);
        int ql = V * 2, qr = V * 2;
        q[qr++] = s;
        while (ql < qr) {
            int v = q[ql++];
            if (v == t) return;
            for (int e = head[v]; e < head[v + 1]; ++e) {
                const auto &nx = tos[e];
                T dnx = dist[v] + nx.second;
                if (dist[nx.first] > dnx) {
                    dist[nx.first] = dnx, prev[nx.first] = v;
                    if (nx.second) {
                        q[qr++] = nx.first;
                    } else {
                        q[--ql] = nx.first;
                    }
                }
            }
        }
    }

    // Dial's algorithm
    // - Requirement: wmin >= 0
    // - Complexity: O(wmax * V + E)
    void dial(int s, int t = INVALID) {
        assert(0 <= s and s < V);
        build_();
        dist.assign(V, INF), prev.assign(V, INVALID);
        dist[s] = 0;
        std::vector<std::vector<std::pair<int, T>>> q(wmax + 1);
        q[0].emplace_back(s, dist[s]);
        int ninq = 1;

        int cur = 0;
        T dcur = 0;
        for (; ninq; ++cur, ++dcur) {
            if (cur == wmax + 1) cur = 0;
            while (!q[cur].empty()) {
                int v = q[cur].back().first;
                T dnow = q[cur].back().second;
                q[cur].pop_back(), --ninq;
                if (v == t) return;
                if (dist[v] < dnow) continue;

                for (int e = head[v]; e < head[v + 1]; ++e) {
                    const auto &nx = tos[e];
                    T dnx = dist[v] + nx.second;
                    if (dist[nx.first] > dnx) {
                        dist[nx.first] = dnx, prev[nx.first] = v;
                        int nxtcur = cur + int(nx.second);
                        if (nxtcur >= int(q.size())) nxtcur -= q.size();
                        q[nxtcur].emplace_back(nx.first, dnx), ++ninq;
                    }
                }
            }
        }
    }

    // Solver for DAG
    // - Requirement: graph is DAG
    // - Complexity: O(V + E)
    bool dag_solver(int s) {
        assert(0 <= s and s < V);
        build_();
        dist.assign(V, INF), prev.assign(V, INVALID);
        dist[s] = 0;
        std::vector<int> indeg(V, 0);
        std::vector<int> q(V * 2);
        int ql = 0, qr = 0;
        q[qr++] = s;
        while (ql < qr) {
            int now = q[ql++];
            for (int e = head[now]; e < head[now + 1]; ++e) {
                const auto &nx = tos[e];
                ++indeg[nx.first];
                if (indeg[nx.first] == 1) q[qr++] = nx.first;
            }
        }
        ql = qr = 0;
        q[qr++] = s;
        while (ql < qr) {
            int now = q[ql++];
            for (int e = head[now]; e < head[now + 1]; ++e) {
                const auto &nx = tos[e];
                --indeg[nx.first];
                if (dist[nx.first] > dist[now] + nx.second)
                    dist[nx.first] = dist[now] + nx.second, prev[nx.first] = now;
                if (indeg[nx.first] == 0) q[qr++] = nx.first;
            }
        }
        return *max_element(indeg.begin(), indeg.end()) == 0;
    }

    // Retrieve a sequence of vertex ids that represents shortest path [s, ..., goal]
    // If not reachable to goal, return {}
    std::vector<int> retrieve_path(int goal) const {
        assert(int(prev.size()) == V);
        assert(0 <= goal and goal < V);
        if (dist[goal] == INF) return {};
        std::vector<int> ret{goal};
        while (prev[goal] != INVALID) {
            goal = prev[goal];
            ret.push_back(goal);
        }
        std::reverse(ret.begin(), ret.end());
        return ret;
    }

    void solve(int s, int t = INVALID) {
        if (wmin >= 0) {
            if (single_positive_weight) {
                zero_one_bfs(s, t);
            } else if (wmax <= 10) {
                dial(s, t);
            } else {
                if ((long long)V * V < (E << 4)) {
                    dijkstra_vquad(s, t);
                } else {
                    dijkstra(s, t);
                }
            }
        } else {
            bellman_ford(s, V);
        }
    }

    // Warshall-Floyd algorithm
    // - Requirement: no negative loop
    // - Complexity: O(E + V^3)
    std::vector<std::vector<T>> floyd_warshall() {
        build_();
        std::vector<std::vector<T>> dist2d(V, std::vector<T>(V, INF));
        for (int i = 0; i < V; i++) {
            dist2d[i][i] = 0;
            for (const auto &e : edges) {
                int s = std::get<0>(e), t = std::get<1>(e);
                dist2d[s][t] = std::min(dist2d[s][t], std::get<2>(e));
            }
        }
        for (int k = 0; k < V; k++) {
            for (int i = 0; i < V; i++) {
                if (dist2d[i][k] == INF) continue;
                for (int j = 0; j < V; j++) {
                    if (dist2d[k][j] == INF) continue;
                    dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);
                }
            }
        }
        return dist2d;
    }

    void to_dot(std::string filename = "shortest_path") const {
        std::ofstream ss(filename + ".DOT");
        ss << "digraph{\n";
        build_();
        for (int i = 0; i < V; i++) {
            for (int e = head[i]; e < head[i + 1]; ++e) {
                ss << i << "->" << tos[e].first << "[label=" << tos[e].second << "];\n";
            }
        }
        ss << "}\n";
        ss.close();
        return;
    }
};


#include <algorithm>
#include <cassert>
#include <functional>
#include <queue>
#include <stack>
#include <utility>
#include <vector>

// Heavy-Light Decomposition of trees
// Based on http://beet-aizu.hatenablog.com/entry/2017/12/12/235950
struct HeavyLightDecomposition {
    int V;
    int k;
    int nb_heavy_path;
    std::vector<std::vector<int>> e;
    std::vector<int> par;         // par[i] = parent of vertex i (Default: -1)
    std::vector<int> depth;       // depth[i] = distance between root and vertex i
    std::vector<int> subtree_sz;  // subtree_sz[i] = size of subtree whose root is i
    std::vector<int> heavy_child; // heavy_child[i] = child of vertex i on heavy path (Default: -1)
    std::vector<int> tree_id;     // tree_id[i] = id of tree vertex i belongs to
    std::vector<int> aligned_id,
        aligned_id_inv;    // aligned_id[i] =  aligned id for vertex i (consecutive on heavy edges)
    std::vector<int> head; // head[i] = id of vertex on heavy path of vertex i, nearest to root
    std::vector<int> head_ids;      // consist of head vertex id's
    std::vector<int> heavy_path_id; // heavy_path_id[i] = heavy_path_id for vertex [i]

    HeavyLightDecomposition(int sz = 0)
        : V(sz), k(0), nb_heavy_path(0), e(sz), par(sz), depth(sz), subtree_sz(sz), heavy_child(sz),
          tree_id(sz, -1), aligned_id(sz), aligned_id_inv(sz), head(sz), heavy_path_id(sz, -1) {}
    void add_edge(int u, int v) {
        e[u].emplace_back(v);
        e[v].emplace_back(u);
    }

    void _build_dfs(int root) {
        std::stack<std::pair<int, int>> st;
        par[root] = -1;
        depth[root] = 0;
        st.emplace(root, 0);
        while (!st.empty()) {
            int now = st.top().first;
            int &i = st.top().second;
            if (i < (int)e[now].size()) {
                int nxt = e[now][i++];
                if (nxt == par[now]) continue;
                par[nxt] = now;
                depth[nxt] = depth[now] + 1;
                st.emplace(nxt, 0);
            } else {
                st.pop();
                int max_sub_sz = 0;
                subtree_sz[now] = 1;
                heavy_child[now] = -1;
                for (auto nxt : e[now]) {
                    if (nxt == par[now]) continue;
                    subtree_sz[now] += subtree_sz[nxt];
                    if (max_sub_sz < subtree_sz[nxt])
                        max_sub_sz = subtree_sz[nxt], heavy_child[now] = nxt;
                }
            }
        }
    }

    void _build_bfs(int root, int tree_id_now) {
        std::queue<int> q({root});
        while (!q.empty()) {
            int h = q.front();
            q.pop();
            head_ids.emplace_back(h);
            for (int now = h; now != -1; now = heavy_child[now]) {
                tree_id[now] = tree_id_now;
                aligned_id[now] = k++;
                aligned_id_inv[aligned_id[now]] = now;
                heavy_path_id[now] = nb_heavy_path;
                head[now] = h;
                for (int nxt : e[now])
                    if (nxt != par[now] and nxt != heavy_child[now]) q.push(nxt);
            }
            nb_heavy_path++;
        }
    }

    void build(std::vector<int> roots = {0}) {
        int tree_id_now = 0;
        for (auto r : roots) _build_dfs(r), _build_bfs(r, tree_id_now++);
    }

    template <class T> std::vector<T> segtree_rearrange(const std::vector<T> &data) const {
        assert(int(data.size()) == V);
        std::vector<T> ret;
        ret.reserve(V);
        for (int i = 0; i < V; i++) ret.emplace_back(data[aligned_id_inv[i]]);
        return ret;
    }

    // query for vertices on path [u, v] (INCLUSIVE)
    void
    for_each_vertex(int u, int v, const std::function<void(int ancestor, int descendant)> &f) const {
        while (true) {
            if (aligned_id[u] > aligned_id[v]) std::swap(u, v);
            f(std::max(aligned_id[head[v]], aligned_id[u]), aligned_id[v]);
            if (head[u] == head[v]) break;
            v = par[head[v]];
        }
    }

    void for_each_vertex_noncommutative(
        int from, int to, const std::function<void(int ancestor, int descendant)> &fup,
        const std::function<void(int ancestor, int descendant)> &fdown) const {
        int u = from, v = to;
        const int lca = lowest_common_ancestor(u, v), dlca = depth[lca];
        while (u >= 0 and depth[u] > dlca) {
            const int p = (depth[head[u]] > dlca ? head[u] : lca);
            fup(aligned_id[p] + (p == lca), aligned_id[u]), u = par[p];
        }
        static std::vector<std::pair<int, int>> lrs;
        int sz = 0;
        while (v >= 0 and depth[v] >= dlca) {
            const int p = (depth[head[v]] >= dlca ? head[v] : lca);
            if (int(lrs.size()) == sz) lrs.emplace_back(0, 0);
            lrs.at(sz++) = {p, v}, v = par.at(p);
        }
        while (sz--) fdown(aligned_id[lrs.at(sz).first], aligned_id[lrs.at(sz).second]);
    }

    // query for edges on path [u, v]
    void for_each_edge(int u, int v, const std::function<void(int, int)> &f) const {
        while (true) {
            if (aligned_id[u] > aligned_id[v]) std::swap(u, v);
            if (head[u] != head[v]) {
                f(aligned_id[head[v]], aligned_id[v]);
                v = par[head[v]];
            } else {
                if (u != v) f(aligned_id[u] + 1, aligned_id[v]);
                break;
            }
        }
    }

    // lowest_common_ancestor: O(log V)
    int lowest_common_ancestor(int u, int v) const {
        assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0);
        while (true) {
            if (aligned_id[u] > aligned_id[v]) std::swap(u, v);
            if (head[u] == head[v]) return u;
            v = par[head[v]];
        }
    }

    int distance(int u, int v) const {
        assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0);
        return depth[u] + depth[v] - 2 * depth[lowest_common_ancestor(u, v)];
    }

    // Level ancestor, O(log V)
    // if k-th parent is out of range, return -1
    int kth_parent(int v, int k) const {
        if (k < 0) return -1;
        while (v >= 0) {
            int h = head.at(v), len = depth.at(v) - depth.at(h);
            if (k <= len) return aligned_id_inv.at(aligned_id.at(v) - k);
            k -= len + 1, v = par.at(h);
        }
        return -1;
    }

    // Jump on tree, O(log V)
    int s_to_t_by_k_steps(int s, int t, int k) const {
        if (k < 0) return -1;
        if (k == 0) return s;
        int lca = lowest_common_ancestor(s, t);
        if (k <= depth.at(s) - depth.at(lca)) return kth_parent(s, k);
        return kth_parent(t, depth.at(s) + depth.at(t) - depth.at(lca) * 2 - k);
    }
};


// UnionFind Tree (0-indexed), based on size of each disjoint set
struct UnionFind {
    std::vector<int> par, cou;
    UnionFind(int N = 0) : par(N), cou(N, 1) { iota(par.begin(), par.end(), 0); }
    int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); }
    bool unite(int x, int y) {
        x = find(x), y = find(y);
        if (x == y) return false;
        if (cou[x] < cou[y]) std::swap(x, y);
        par[y] = x, cou[x] += cou[y];
        return true;
    }
    int count(int x) { return cou[find(x)]; }
    bool same(int x, int y) { return find(x) == find(y); }
    std::vector<std::vector<int>> groups() {
        std::vector<std::vector<int>> ret(par.size());
        for (int i = 0; i < int(par.size()); ++i) ret[find(i)].push_back(i);
        ret.erase(std::remove_if(ret.begin(), ret.end(),
                                 [&](const std::vector<int> &v) { return v.empty(); }),
                  ret.end());
        return ret;
    }
};

int main() {
    vector<lint> Anew, Bnew;
    int R;

    vector<int> pars;

    vector<int> vsord;

    {
        int N;
        cin >> N;
        vector<lint> A(N), B(N), C(N);
        cin >> A >> B >> C;
        // dbg(make_tuple(N, A, B, C));
        REP(i, N) C.at(i)--;

        UnionFind ufinit(N);
        HeavyLightDecomposition hld(N);
        vector<pint> loop_es;
        REP(i, N) {
            const int j = C.at(i);
            if (ufinit.unite(i, j)) {
                hld.add_edge(i, j);
            } else {
                loop_es.emplace_back(i, j);
            }
        }

        vector<int> initrs;
        REP(i, N) if (ufinit.find(i) == i) initrs.push_back(i);

        hld.build(initrs);

        UnionFind uf(N);
        for (auto [a, b] : loop_es) {
            uf.unite(a, b);
            while (a != b) {
                // if (a < 0) break;
                // if (b < 0) break;
                if (hld.depth.at(a) > hld.depth.at(b)) {
                    int j = hld.par.at(a);
                    uf.unite(a, j);
                    a = j;
                } else {
                    int j = hld.par.at(b);
                    uf.unite(b, j);
                    b = j;
                }
            }
        }

        vector<int> rs;
        REP(i, N) if (uf.find(i) == i) rs.push_back(i);
        R = rs.size();

        Anew.assign(R, 0), Bnew.assign(R, 0);
        REP(i, N) {
            Anew.at(arglb(rs, uf.find(i))) += A.at(i);
            Bnew.at(arglb(rs, uf.find(i))) += B.at(i);
        }

        pars.assign(R, -1);

        shortest_path<int> sp(R + 1);

        REP(i, N) {
            int p = arglb(rs, uf.find(C.at(i)));
            int c = arglb(rs, uf.find(i));
            dbg(make_tuple(p, c));
            if (p != c) {
                sp.add_edge(p, c, 1);
                pars.at(c) = p;
            } else {
                sp.add_edge(R, c, 0);
            }
        }
        sp.solve(R);

        // dbg(sp.dist);

        vsord.resize(R);
        REP(r, R) vsord.at(r) = r;
        sort(ALL(vsord), [&](int i, int j) { return sp.dist.at(i) > sp.dist.at(j); });

        dbg(vsord);
    }

    lint ok = 0, ng = accumulate(ALL(Anew), 0LL) / max(1LL, accumulate(ALL(Bnew), 0LL)) + 1;
    // dbg(ng);
    while (ng > ok + 1) {
        const auto c = (ok + ng) / 2;
        vector<lint> req(R);
        REP(r, R) req.at(r) = Bnew.at(r) * c;
        // dbg(make_tuple(c, req, Bnew));

        bool failure = false;

        for (int v : vsord) {
            req.at(v) -= Anew.at(v);
            if (req.at(v) > 0) {
                int p = pars.at(v);
                if (p < 0) {
                    failure = true;
                    break;
                } else {
                    req.at(p) += req.at(v);
                }
            }
        }
        (failure ? ng : ok) = c;
    }
    cout << ok << '\n';
}
0