結果

問題 No.187 中華風 (Hard)
ユーザー 37zigen37zigen
提出日時 2016-05-15 15:27:17
言語 Java21
(openjdk 21)
結果
RE  
実行時間 -
コード長 5,443 bytes
コンパイル時間 3,005 ms
コンパイル使用メモリ 82,688 KB
実行使用メモリ 57,712 KB
最終ジャッジ日時 2024-10-06 03:24:10
合計ジャッジ時間 9,706 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 RE -
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.Scanner;
public class Main {
	public static void main(String[] args){
		new Main().solve();
	}
	int MOD=1_000_000_000+7;
	void solve(){
		Prime p=new Prime();
		ArrayList<Integer> primeList=p.primeList((int)Math.sqrt(MOD));
		Scanner sc=new Scanner(System.in);
		int n=sc.nextInt();
		long[] x=new long[n];//x余る
		long[] y=new long[n];//mod y
		HashMap<Long,long[]> map=new HashMap<Long,long[]>();
		/*
		 * HashMap<f.base,{f.exp,x}
		 */
		for(int i=0;i<n;i++){
			x[i]=sc.nextLong();
			y[i]=sc.nextLong();
			ArrayList<Factor> f=p.primeFactorF(primeList, y[i]);

			for(Factor ff:f){
				if(!f.contains(ff.base))
					map.put(ff.base, new long[]{ff.exp,x[i]});
				else{
					if(map.get(ff.base)[0]<ff.exp)
						map.put(ff.base,new long[]{ff.exp,y[i]});
				}
			}
		}
		long[] X=new long[map.size()];
		long[] mod=new long[map.size()];
		int now=0;
		for(Map.Entry<Long,long[]> e:map.entrySet()){
			mod[now]=pow(e.getKey(),e.getValue()[0]);
			X[now]=e.getValue()[1]%mod[now];
			now++;
		}
		long ans=garner(X,mod);
		//		for(int i=0;i<map.size();i++){
		//			if((ans%mod[i])!=X[i]){
		//				System.out.println("Error");
		//				System.out.println(ans+" "+X[i]+" "+mod[i]);
		//			}
		//		}
		//		System.out.println("Correct");


		for(int i=0;i<n;i++){
			if(ans%y[i]!=x[i]){
				System.out.println(-1);
				return;
			}
		}
		System.out.println(ans);
	}
	void tr(Object...o){System.out.println(Arrays.deepToString(o));}
	long pow(long a,long n){
		long A=a;
		long ans=1;
		while(n>=1){
			if(n%2==0){
				A=A*A;
				n/=2;
			}else if(n%2==1){
				ans=ans*A;
				n--;
			}
		}
		return ans;
	}
	/**
	 * x[i]=Y mod M[i] (i=0,1,2,3,...,n-1)
	 * (M[i],M[j]は互いに素)
	 * を満たす最小の自然数Yを求める。
	 * Y=v0+M[0]*v1+M[0]*M[1]*v2+... mod(M[0]M[1]...M[n-1])
	 * X[0]から順番に条件を用いて、v0から順番に求める。
	 *
	 * cf.
	 * http://www.csee.umbc.edu/~lomonaco/s08/441/handouts/Garner-Alg-Example.pdf
	 * http://pekempey.hatenablog.com/entry/2015/11/07/210000
	 *
	 */


	long garner(long[] x,long[] m){
		assert x.length!=m.length;
		int n=x.length;
		long Y=0;
//		tr(x);tr(m);
		long d=1;
		for(int i=0;i<n;i++){
			if(i==0){
				Y+=x[0];
				continue;
			}
			else{
				long d_inv=1;
				d*=m[i-1];
				d%=MOD;
				/**
				 * まずv_iを求める。
				 * Y(now)はmod M[k]でX[k]となる数。(0<=k<=i-1)
				 * Y(now)+M[0]*M[1]*...*M[i-1]v_i =x[i] mod m[i] 
				 * (d=M[0]*M[1]*M[2]*M[3]*...*M[i-1]とすると)
				 * Y(now)+d*v_i=x[i] mod m[i]
				 * v_i=d_inv*(x[i]-Y(now)) mod m[i]
				 * 
				 * Y(now)=Y(now)+d*v_i (mod M[0][M[1]M[2]...M[i-1]M[i])
				 */
				for(int j=0;j<i;j++){
					d_inv*=inv_pos(m[j], m[i]);
					d_inv%=MOD;
				}
				long dumy=x[i]%m[i]-Y%m[i];
				while(dumy<0)dumy+=m[i];

				long v=(dumy*d_inv)%m[i];
//				System.out.println(Y+" "+d+" "+v);
				Y=(Y+d*v)%MOD;
//				System.out.println(Y);
				}
			}
		return Y%MOD;
	}
	
	long inv_pos(long a,long p){
		long ans=inverse_element(a,p);
		while(ans<0)ans+=p;
		return ans;
	}
	/**
	 * Verified
	 * yukicoder No.109
	 *
	 * ax=1 mod p
	 * となる逆元x=a^(-1)を求める。
	 * 負の値を返すことがあることに注意。
	 * a,pが互いに素でないときは逆元は存在しない(正しくない値を返す)。
	 * 拡張ユークリッドの控除法を用いた。
	 *
	 */
	long inverse_element(long a,long p){
		return extended_Euclid(1, 0, a, 0, 1, p)[0];
	}
	/**
	 *拡張ユークリッドの控除法。
	 *参考
	 *http://arc360.info/algo/privatekey.html
	 *
	 * extende_Euclid(1,0,a,0,1,b)
	 * が最初に代入する値。
	 * ax+by=gcd(a,b)を満たす、(x,y)とgcd(a,b)を
	 * {x,y,gcd(a,b)}の形で返す。
	 */
	long[] extended_Euclid(long x0,long y0,long c0,long x1,long y1,long c1){
		if(c0<c1)return extended_Euclid(x1,y1,c1,x0,y0,c0);
		if(c1==0)return new long[]{x0,y0,c0};
		else{
			long q=c0/c1;
			return extended_Euclid(x1,y1,c1,x0-x1*q,y0-y1*q,c0-c1*q);
		}
	}
	class Prime{
		boolean[] isPrimeArray(int max){
			boolean[] isPrime=new boolean[max+1];
			Arrays.fill(isPrime, true);
			isPrime[0]=isPrime[1]=false;
			for(int i=2;i*i<=max;i++){
				if(isPrime[i]){
					for(int j=2;j*i<=max;j++){
						isPrime[j*i]=false;
					}
				}
			}
			return isPrime;
		}
		/*
		 * max以下の素数のリストを返す
		 */
		ArrayList<Integer> primeList(int max){
			boolean[] isPrime=isPrimeArray(max);
			ArrayList<Integer> primeList=new ArrayList<Integer>();
			for(int i=2;i<=max;i++){
				if(isPrime[i]){
					primeList.add(i);
				}
			}
			return primeList;
		}
		/*
		 * numをprimeListの素数をもとに素因数分解し、因数を
		 * ArrayList<Factor>の形で返す。
		 * primeListにはnumの平方根以下の素数が含まれていなければならない。
		 * 
		 */
		ArrayList<Factor> primeFactorF(ArrayList<Integer> primeList,long num){
			ArrayList<Factor> ret=new ArrayList<Factor>();
			for(int p:primeList){
				int exp=0;
				while(num%p==0){
					num/=p;
					exp++;
				}
				if(exp>0)ret.add(new Factor(p,exp));
			}
			if(num>1)ret.add(new Factor((int)num,1));
			return ret;
		}
	}
	class Factor{
		long base,exp;
		Factor(long base,long exp){
			this.base=base;
			this.exp=exp;
		}
	}
	class Pair{
		long x;
		long mod;
		Pair(long x,long mod){
			this.x=x;
			this.mod=mod;
		}
	}
}
0