結果

問題 No.2522 Fall in love, Girls!
ユーザー ecotteaecottea
提出日時 2023-10-28 01:31:00
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 10,601 bytes
コンパイル時間 5,062 ms
コンパイル使用メモリ 273,020 KB
実行使用メモリ 23,184 KB
最終ジャッジ日時 2024-09-25 15:54:22
合計ジャッジ時間 7,561 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 118 ms
11,504 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 4 ms
6,940 KB
testcase_07 AC 6 ms
6,944 KB
testcase_08 AC 8 ms
6,940 KB
testcase_09 WA -
testcase_10 AC 188 ms
23,152 KB
testcase_11 AC 208 ms
23,184 KB
testcase_12 AC 15 ms
11,196 KB
testcase_13 AC 180 ms
23,124 KB
testcase_14 AC 148 ms
23,176 KB
testcase_15 AC 139 ms
23,120 KB
testcase_16 AC 150 ms
23,104 KB
testcase_17 AC 25 ms
15,116 KB
testcase_18 AC 21 ms
15,120 KB
testcase_19 AC 26 ms
15,356 KB
testcase_20 AC 18 ms
14,488 KB
testcase_21 AC 18 ms
13,904 KB
testcase_22 AC 18 ms
14,356 KB
testcase_23 AC 20 ms
14,608 KB
testcase_24 AC 22 ms
12,276 KB
testcase_25 AC 197 ms
20,680 KB
testcase_26 AC 183 ms
17,832 KB
testcase_27 AC 9 ms
8,320 KB
testcase_28 AC 180 ms
12,492 KB
testcase_29 AC 13 ms
11,144 KB
testcase_30 AC 24 ms
14,728 KB
testcase_31 AC 15 ms
11,360 KB
testcase_32 AC 198 ms
17,360 KB
testcase_33 AC 15 ms
13,152 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif


//【座標圧縮(区間)】O(n log n)
/*
* n 個の半開区間 [x1[i], x2[i]) を座標圧縮した結果を x1_cp[i], x2_cp[i] に格納する.
* また xs[i] に圧縮された座標 i に対応する元の座標を格納する.
* 戻り値として x 座標の数を返す.
*/
template <class T>
int coordinate_compression_interval(const vector<T>& x1, const vector<T>& x2,
	vi& x1_cp, vi& x2_cp, vector<T>* xs = nullptr)
{
	// verify : https://atcoder.jp/contests/abc188/tasks/abc188_d

	int n = sz(x1);
	if (xs == nullptr) xs = new vector<T>;

	// x 座標だけを抜き出す.
	xs->clear();
	rep(i, n) {
		xs->push_back(x1[i]);
		xs->push_back(x2[i]);
	}

	// *xs : 区間端の x 座標のユニークな昇順列
	uniq(*xs);

	// 各区間の端の座標が xs において何番目かを求める.
	x1_cp.resize(n); x2_cp.resize(n);
	rep(i, n) {
		x1_cp[i] = lbpos(*xs, x1[i]);
		x2_cp[i] = lbpos(*xs, x2[i]);
	}

	return sz(*xs);
}


//【階乗など(法が大きな素数)】
/*
* Factorial_mint(int N) : O(n)
*	N まで計算可能として初期化する.
*
* mint fact(int n) : O(1)
*	n! を返す.
*
* mint fact_inv(int n) : O(1)
*	1/n! を返す(n が負なら 0 を返す)
*
* mint inv(int n) : O(1)
*	1/n を返す.
*
* mint perm(int n, int r) : O(1)
*	順列の数 nPr を返す.
*
* mint bin(int n, int r) : O(1)
*	二項係数 nCr を返す.
*
* mint mul(vi rs) : O(|rs|)
*	多項係数 nC[rs] を返す.(n = Σrs)
*/
class Factorial_mint {
	int n_max;

	// 階乗と階乗の逆数の値を保持するテーブル
	vm fac, fac_inv;

public:
	// n! までの階乗とその逆数を前計算しておく.O(n)
	Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		fac[0] = 1;
		repi(i, 1, n) fac[i] = fac[i - 1] * i;

		fac_inv[n] = fac[n].inv();
		repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);
	}
	Factorial_mint() : n_max(0) {} // ダミー

	// n! を返す.
	mint fact(int n) const {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		Assert(0 <= n && n <= n_max);
		return fac[n];
	}

	// 1/n! を返す(n が負なら 0 を返す)
	mint fact_inv(int n) const {
		// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h

		Assert(n <= n_max);
		if (n < 0) return 0;
		return fac_inv[n];
	}

	// 1/n を返す.
	mint inv(int n) const {
		// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d

		Assert(0 < n && n <= n_max);
		return fac[n - 1] * fac_inv[n];
	}

	// 順列の数 nPr を返す.
	mint perm(int n, int r) const {
		// verify : https://atcoder.jp/contests/abc172/tasks/abc172_e

		Assert(n <= n_max);

		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[n - r];
	}

	// 二項係数 nCr を返す.
	mint bin(int n, int r) const {
		// verify : https://atcoder.jp/contests/abc034/tasks/abc034_c

		Assert(n <= n_max);
		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[r] * fac_inv[n - r];
	}

	// 多項係数 nC[rs] を返す.
	mint mul(const vi& rs) const {
		// verify : https://yukicoder.me/problems/no/2141

		if (*min_element(all(rs)) < 0) return 0;
		int n = accumulate(all(rs), 0);
		Assert(n <= n_max);

		mint res = fac[n];
		repe(r, rs) res *= fac_inv[r];

		return res;
	}
};


//【トポロジカルソートの数え上げ】O(2^n m)(の改変)
/*
* 有向グラフ g をトポロジカルソートする方法が何通りあるかを返す.
*/
vm count_topological_sort(const Graph& g) {
	// verify : https://atcoder.jp/contests/abc041/tasks/abc041_d

	//【方法】
	// トポロジカルソートされた列の後ろから順にどの頂点を割り当てるかを決めていく.
	// 割り当て済の頂点の集合を覚えておく bit DP を用いる.

	int n = sz(g);

	// dp[set] : トポロジカルソートされた列の後ろから |set| 個の頂点が set である場合の数
	vl dp(1LL << n);
	dp[0] = 1;

	vm res(n);

	repb(set, n) {
		// s : 次に割り当てる頂点
		rep(s, n) {
			// s が既に割り当て済の頂点なら何もしない.
			if (set & (1 << s)) continue;

			// トポロジカルソートされた列の後ろ順に頂点を対応させていっているので,
			// s→t なる全ての頂点 t は既に選ばれていなければならない.
			bool choosable = true;
			repe(t, g[s]) {
				if (!(set & (1 << t))) {
					choosable = false;
					break;
				}
			}

			if (choosable) {
				int nset = set + (1 << s);
				dp[nset] += dp[set];
				if (nset == (1 << n) - 1) {
					res[s] += dp[set];
				}
			}
		}
	}

	return res;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n, m, k;
	cin >> n >> m >> k;

	Factorial_mint fm(n);

	if (k == 0) {
		if (m > 0) {
			cout << m * fm.fact(n - 1) << endl;
		}
		else {
			cout << fm.fact(n) << endl;
		}
		return 0;
	}

	vi x(k), y(k);
	rep(i, k) cin >> x[i] >> y[i];
	--x; --y;

	vi sel(n);
	rep(i, k) {
		sel[x[i]] = 1;
		sel[y[i]] = 1;
	}

	vi x_cp, y_cp, p;
	int n_cp = coordinate_compression_interval(x, y, x_cp, y_cp, &p);

	Graph g(n_cp);
	rep(i, k) g[x_cp[i]].push_back(y_cp[i]);

	auto cnt = count_topological_sort(g);
	dump(cnt);

	int rem = 0;
	repi(i, m, n - 1) if (!sel[i]) rem++;
	dump(rem);

	mint res;

	rep(i, n_cp) {
		if (p[i] < m) {
			if (rem > 0) res += rem * fm.bin(n - 1, n_cp) * cnt[i] * fm.fact(n - 1 - n_cp);
		}
		else {
			if (rem > 0) res += rem * fm.bin(n - 1, n_cp) * cnt[i] * fm.fact(n - 1 - n_cp);
			res += fm.bin(n - 1, n_cp - 1) * cnt[i] * fm.fact(n - n_cp);
		}
	}

	cout << res << endl;
}
0