結果

問題 No.2496 LCM between Permutations
ユーザー hitonanodehitonanode
提出日時 2023-10-31 02:25:57
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 109 ms / 2,000 ms
コード長 13,891 bytes
コンパイル時間 2,661 ms
コンパイル使用メモリ 200,492 KB
実行使用メモリ 25,220 KB
平均クエリ数 776.59
最終ジャッジ日時 2024-09-25 17:29:14
合計ジャッジ時間 5,751 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 25 ms
24,556 KB
testcase_01 AC 23 ms
25,220 KB
testcase_02 AC 24 ms
24,836 KB
testcase_03 AC 23 ms
25,220 KB
testcase_04 AC 24 ms
24,836 KB
testcase_05 AC 24 ms
25,092 KB
testcase_06 AC 25 ms
25,220 KB
testcase_07 AC 23 ms
25,220 KB
testcase_08 AC 24 ms
25,220 KB
testcase_09 AC 23 ms
24,580 KB
testcase_10 AC 24 ms
24,580 KB
testcase_11 AC 23 ms
25,220 KB
testcase_12 AC 24 ms
25,220 KB
testcase_13 AC 23 ms
25,208 KB
testcase_14 AC 24 ms
25,220 KB
testcase_15 AC 28 ms
25,196 KB
testcase_16 AC 31 ms
24,812 KB
testcase_17 AC 32 ms
24,940 KB
testcase_18 AC 72 ms
24,836 KB
testcase_19 AC 67 ms
25,220 KB
testcase_20 AC 72 ms
25,220 KB
testcase_21 AC 74 ms
25,220 KB
testcase_22 AC 70 ms
24,836 KB
testcase_23 AC 101 ms
24,836 KB
testcase_24 AC 70 ms
25,220 KB
testcase_25 AC 84 ms
25,220 KB
testcase_26 AC 107 ms
25,196 KB
testcase_27 AC 106 ms
24,940 KB
testcase_28 AC 109 ms
24,556 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif

// Linear sieve algorithm for fast prime factorization
// Complexity: O(N) time, O(N) space:
// - MAXN = 10^7:  ~44 MB,  80~100 ms (Codeforces / AtCoder GCC, C++17)
// - MAXN = 10^8: ~435 MB, 810~980 ms (Codeforces / AtCoder GCC, C++17)
// Reference:
// [1] D. Gries, J. Misra, "A Linear Sieve Algorithm for Finding Prime Numbers,"
//     Communications of the ACM, 21(12), 999-1003, 1978.
// - https://cp-algorithms.com/algebra/prime-sieve-linear.html
// - https://37zigen.com/linear-sieve/
struct Sieve {
    std::vector<int> min_factor;
    std::vector<int> primes;
    Sieve(int MAXN) : min_factor(MAXN + 1) {
        for (int d = 2; d <= MAXN; d++) {
            if (!min_factor[d]) {
                min_factor[d] = d;
                primes.emplace_back(d);
            }
            for (const auto &p : primes) {
                if (p > min_factor[d] or d * p > MAXN) break;
                min_factor[d * p] = p;
            }
        }
    }
    // Prime factorization for 1 <= x <= MAXN^2
    // Complexity: O(log x)           (x <= MAXN)
    //             O(MAXN / log MAXN) (MAXN < x <= MAXN^2)
    template <class T> std::map<T, int> factorize(T x) const {
        std::map<T, int> ret;
        assert(x > 0 and
               x <= ((long long)min_factor.size() - 1) * ((long long)min_factor.size() - 1));
        for (const auto &p : primes) {
            if (x < T(min_factor.size())) break;
            while (!(x % p)) x /= p, ret[p]++;
        }
        if (x >= T(min_factor.size())) ret[x]++, x = 1;
        while (x > 1) ret[min_factor[x]]++, x /= min_factor[x];
        return ret;
    }
    // Enumerate divisors of 1 <= x <= MAXN^2
    // Be careful of highly composite numbers https://oeis.org/A002182/list
    // https://gist.github.com/dario2994/fb4713f252ca86c1254d#file-list-txt (n, (# of div. of n)):
    // 45360->100, 735134400(<1e9)->1344, 963761198400(<1e12)->6720
    template <class T> std::vector<T> divisors(T x) const {
        std::vector<T> ret{1};
        for (const auto p : factorize(x)) {
            int n = ret.size();
            for (int i = 0; i < n; i++) {
                for (T a = 1, d = 1; d <= p.second; d++) {
                    a *= p.first;
                    ret.push_back(ret[i] * a);
                }
            }
        }
        return ret; // NOT sorted
    }
    // Euler phi functions of divisors of given x
    // Verified: ABC212 G https://atcoder.jp/contests/abc212/tasks/abc212_g
    // Complexity: O(sqrt(x) + d(x))
    template <class T> std::map<T, T> euler_of_divisors(T x) const {
        assert(x >= 1);
        std::map<T, T> ret;
        ret[1] = 1;
        std::vector<T> divs{1};
        for (auto p : factorize(x)) {
            int n = ret.size();
            for (int i = 0; i < n; i++) {
                ret[divs[i] * p.first] = ret[divs[i]] * (p.first - 1);
                divs.push_back(divs[i] * p.first);
                for (T a = divs[i] * p.first, d = 1; d < p.second; a *= p.first, d++) {
                    ret[a * p.first] = ret[a] * p.first;
                    divs.push_back(a * p.first);
                }
            }
        }
        return ret;
    }
    // Moebius function Table, (-1)^{# of different prime factors} for square-free x
    // return: [0=>0, 1=>1, 2=>-1, 3=>-1, 4=>0, 5=>-1, 6=>1, 7=>-1, 8=>0, ...] https://oeis.org/A008683
    std::vector<int> GenerateMoebiusFunctionTable() const {
        std::vector<int> ret(min_factor.size());
        for (unsigned i = 1; i < min_factor.size(); i++) {
            if (i == 1) {
                ret[i] = 1;
            } else if ((i / min_factor[i]) % min_factor[i] == 0) {
                ret[i] = 0;
            } else {
                ret[i] = -ret[i / min_factor[i]];
            }
        }
        return ret;
    }
    // Calculate [0^K, 1^K, ..., nmax^K] in O(nmax)
    // Note: **0^0 == 1**
    template <class MODINT> std::vector<MODINT> enumerate_kth_pows(long long K, int nmax) const {
        assert(nmax < int(min_factor.size()));
        assert(K >= 0);
        if (K == 0) return std::vector<MODINT>(nmax + 1, 1);
        std::vector<MODINT> ret(nmax + 1);
        ret[0] = 0, ret[1] = 1;
        for (int n = 2; n <= nmax; n++) {
            if (min_factor[n] == n) {
                ret[n] = MODINT(n).pow(K);
            } else {
                ret[n] = ret[n / min_factor[n]] * ret[min_factor[n]];
            }
        }
        return ret;
    }
};

int N;

int ask(int i, int j) {
    assert(0 <= i and i < N);
    assert(0 <= j and j < N);
    cout << "? " << i + 1 << ' ' << j + 1 << endl;
    int ret;
    cin >> ret;
    return ret;
}

void dump(const vector<int> &A, const vector<int> &B) {
    assert(sort_unique(A).size() == N);
    assert(sort_unique(B).size() == N);
    cout << "!";
    for (int x : A) {
        assert(0 < x and x <= N);
        cout << ' ' << x;
    }
    for (int x : B) {
        assert(0 < x and x <= N);
        cout << ' ' << x;
    }
    cout << endl;
    exit(0);
}

int main() {
    cin >> N;

    vector<int> A(N, -1), B(N, -1);

    if (N <= 3) {
        vector<int> A(N, N), B(N, N);
        REP(i, N) REP(j, N) {
            int v = ask(i, j);
            chmin(A.at(i), v);
            chmin(B.at(j), v);
        }
        dump(A, B);
        return 0;
    }

    const Sieve sieve(N);

    vector<int> gs(N);
    REP(j, N) gs.at(j) = ask(0, j);

    A.at(0) = *min_element(ALL(gs));

    map<int, vector<int>> mp;
    FOR(v, 1, N + 1) mp[lcm(A.at(0), v)].push_back(v);

    REP(j, N) {
        auto vs = mp.at(gs.at(j));
        if (vs.size() == 1) B.at(j) = vs.at(0);
    }

    {
        vector<int> pending_is;
        int jp = N - 1;
        while (jp >= 0 and (B.at(jp) * 2 <= N or sieve.min_factor.at(B.at(jp)) != B.at(jp))) --jp;

        if (jp < 0) {
            vector<int> js;
            REP(j, N) if (gs.at(j) == A.at(0)) js.push_back(j);
            assert(js.size() == 2);
            const int v0 = ask(1, js.at(0)), v1 = ask(1, js.at(1));
            if (v0 < v1) {
                B.at(js.at(0)) = 1;
                B.at(js.at(1)) = A.at(0);
                jp = js.at(1);
            } else {
                B.at(js.at(0)) = A.at(0);
                B.at(js.at(1)) = 1;
                jp = js.at(0);
            }
        }


        const int p = B.at(jp);
        FOR(i, 1, N) {
            int v = ask(i, jp);
            if (v != p) {
                A.at(i) = v / p;
            } else {
                pending_is.push_back(i);
            }
        }
        
        if (pending_is.size() == 1) {
            assert(A.at(0) == 1 or A.at(0) == p);
            A.at(pending_is.at(0)) = A.at(0) == 1 ? p : 1;
        } else {
            assert(pending_is.size() == 2);
            const int jnxt = (jp + 1) % N;

            int v0 = ask(pending_is.at(0), jnxt), v1 = ask(pending_is.at(1), jnxt);
            assert(v0 != v1);
            if (v0 < v1) {
                A.at(pending_is.at(0)) = 1;
                A.at(pending_is.at(1)) = p;
            } else {
                A.at(pending_is.at(0)) = p;
                A.at(pending_is.at(1)) = 1;
            }
        }
    }

    {
        const int i1 = min_element(ALL(A)) - A.begin();
        REP(j, N) if (B.at(j) < 0) B.at(j) = ask(i1, j);
    }

    dump(A, B);
}
0