結果

問題 No.2531 Coloring Vertices on Namori
ユーザー hitonanodehitonanode
提出日時 2023-11-03 21:50:42
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 263 ms / 2,000 ms
コード長 18,881 bytes
コンパイル時間 2,537 ms
コンパイル使用メモリ 203,572 KB
実行使用メモリ 53,512 KB
最終ジャッジ日時 2024-09-25 20:00:21
合計ジャッジ時間 9,352 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 117 ms
53,512 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 120 ms
53,384 KB
testcase_08 AC 263 ms
50,528 KB
testcase_09 AC 243 ms
52,352 KB
testcase_10 AC 246 ms
49,424 KB
testcase_11 AC 94 ms
46,896 KB
testcase_12 AC 94 ms
47,024 KB
testcase_13 AC 94 ms
46,896 KB
testcase_14 AC 233 ms
52,808 KB
testcase_15 AC 240 ms
49,852 KB
testcase_16 AC 231 ms
49,528 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 235 ms
45,592 KB
testcase_21 AC 253 ms
45,596 KB
testcase_22 AC 244 ms
45,708 KB
testcase_23 AC 243 ms
45,720 KB
testcase_24 AC 246 ms
45,596 KB
testcase_25 AC 244 ms
45,724 KB
testcase_26 AC 232 ms
45,592 KB
testcase_27 AC 239 ms
45,724 KB
testcase_28 AC 244 ms
45,600 KB
testcase_29 AC 234 ms
45,600 KB
testcase_30 AC 239 ms
45,600 KB
testcase_31 AC 242 ms
45,600 KB
testcase_32 AC 246 ms
45,592 KB
testcase_33 AC 241 ms
45,592 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif


template <int md> struct ModInt {
    using lint = long long;
    constexpr static int mod() { return md; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&]() {
                std::set<int> fac;
                int v = md - 1;
                for (lint i = 2; i * i <= v; i++)
                    while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < md; g++) {
                    bool ok = true;
                    for (auto i : fac)
                        if (ModInt(g).pow((md - 1) / i) == 1) {
                            ok = false;
                            break;
                        }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val_;
    int val() const noexcept { return val_; }
    constexpr ModInt() : val_(0) {}
    constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }
    constexpr ModInt(lint v) { _setval(v % md + md); }
    constexpr explicit operator bool() const { return val_ != 0; }
    constexpr ModInt operator+(const ModInt &x) const {
        return ModInt()._setval((lint)val_ + x.val_);
    }
    constexpr ModInt operator-(const ModInt &x) const {
        return ModInt()._setval((lint)val_ - x.val_ + md);
    }
    constexpr ModInt operator*(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.val_ % md);
    }
    constexpr ModInt operator/(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.inv().val() % md);
    }
    constexpr ModInt operator-() const { return ModInt()._setval(md - val_); }
    constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend constexpr ModInt operator+(lint a, const ModInt &x) {
        return ModInt()._setval(a % md + x.val_);
    }
    friend constexpr ModInt operator-(lint a, const ModInt &x) {
        return ModInt()._setval(a % md - x.val_ + md);
    }
    friend constexpr ModInt operator*(lint a, const ModInt &x) {
        return ModInt()._setval(a % md * x.val_ % md);
    }
    friend constexpr ModInt operator/(lint a, const ModInt &x) {
        return ModInt()._setval(a % md * x.inv().val() % md);
    }
    constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; }
    constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; }
    constexpr bool operator<(const ModInt &x) const {
        return val_ < x.val_;
    } // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) {
        lint t;
        return is >> t, x = ModInt(t), is;
    }
    constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {
        return os << x.val_;
    }

    constexpr ModInt pow(lint n) const {
        ModInt ans = 1, tmp = *this;
        while (n) {
            if (n & 1) ans *= tmp;
            tmp *= tmp, n >>= 1;
        }
        return ans;
    }

    static constexpr int cache_limit = std::min(md, 1 << 21);
    static std::vector<ModInt> facs, facinvs, invs;

    constexpr static void _precalculation(int N) {
        const int l0 = facs.size();
        if (N > md) N = md;
        if (N <= l0) return;
        facs.resize(N), facinvs.resize(N), invs.resize(N);
        for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
        facinvs[N - 1] = facs.back().pow(md - 2);
        for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
        for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
    }

    constexpr ModInt inv() const {
        if (this->val_ < cache_limit) {
            if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0};
            while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
            return invs[this->val_];
        } else {
            return this->pow(md - 2);
        }
    }
    constexpr ModInt fac() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facs[this->val_];
    }
    constexpr ModInt facinv() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facinvs[this->val_];
    }
    constexpr ModInt doublefac() const {
        lint k = (this->val_ + 1) / 2;
        return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
                                : ModInt(k).fac() * ModInt(2).pow(k);
    }

    constexpr ModInt nCr(int r) const {
        if (r < 0 or this->val_ < r) return ModInt(0);
        return this->fac() * (*this - r).facinv() * ModInt(r).facinv();
    }

    constexpr ModInt nPr(int r) const {
        if (r < 0 or this->val_ < r) return ModInt(0);
        return this->fac() * (*this - r).facinv();
    }

    static ModInt binom(int n, int r) {
        static long long bruteforce_times = 0;

        if (r < 0 or n < r) return ModInt(0);
        if (n <= bruteforce_times or n < (int)facs.size()) return ModInt(n).nCr(r);

        r = std::min(r, n - r);

        ModInt ret = ModInt(r).facinv();
        for (int i = 0; i < r; ++i) ret *= n - i;
        bruteforce_times += r;

        return ret;
    }

    // Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!)
    // Complexity: O(sum(ks))
    template <class Vec> static ModInt multinomial(const Vec &ks) {
        ModInt ret{1};
        int sum = 0;
        for (int k : ks) {
            assert(k >= 0);
            ret *= ModInt(k).facinv(), sum += k;
        }
        return ret * ModInt(sum).fac();
    }

    // Catalan number, C_n = binom(2n, n) / (n + 1)
    // C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ...
    // https://oeis.org/A000108
    // Complexity: O(n)
    static ModInt catalan(int n) {
        if (n < 0) return ModInt(0);
        return ModInt(n * 2).fac() * ModInt(n + 1).facinv() * ModInt(n).facinv();
    }

    ModInt sqrt() const {
        if (val_ == 0) return 0;
        if (md == 2) return val_;
        if (pow((md - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.pow((md - 1) / 2) == 1) b += 1;
        int e = 0, m = md - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.pow(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.pow(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val_, md - x.val_));
    }
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};

using mint = ModInt<998244353>;

// UnionFind Tree (0-indexed), based on size of each disjoint set
struct UnionFind {
    std::vector<int> par, cou;
    UnionFind(int N = 0) : par(N), cou(N, 1) { iota(par.begin(), par.end(), 0); }
    int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); }
    bool unite(int x, int y) {
        x = find(x), y = find(y);
        if (x == y) return false;
        if (cou[x] < cou[y]) std::swap(x, y);
        par[y] = x, cou[x] += cou[y];
        return true;
    }
    int count(int x) { return cou[find(x)]; }
    bool same(int x, int y) { return find(x) == find(y); }
    std::vector<std::vector<int>> groups() {
        std::vector<std::vector<int>> ret(par.size());
        for (int i = 0; i < int(par.size()); ++i) ret[find(i)].push_back(i);
        ret.erase(std::remove_if(ret.begin(), ret.end(),
                                 [&](const std::vector<int> &v) { return v.empty(); }),
                  ret.end());
        return ret;
    }
};

// lowest common ancestor (LCA) for undirected weighted tree
template <typename T> struct UndirectedWeightedTree {
    int INVALID = -1;
    int V, lgV;
    int E;
    int root;
    std::vector<std::vector<std::pair<int, int>>> adj; // (nxt_vertex, edge_id)
    // vector<pint> edge; // edges[edge_id] = (vertex_id, vertex_id)
    std::vector<T> weight;     // w[edge_id]
    std::vector<int> par;      // parent_vertex_id[vertex_id]
    std::vector<int> depth;    // depth_from_root[vertex_id]
    std::vector<T> acc_weight; // w_sum_from_root[vertex_id]

    void _fix_root_dfs(int now, int prv, int prv_edge_id) {
        par[now] = prv;
        if (prv_edge_id != INVALID) acc_weight[now] = acc_weight[prv] + weight[prv_edge_id];
        for (auto nxt : adj[now])
            if (nxt.first != prv) {
                depth[nxt.first] = depth[now] + 1;
                _fix_root_dfs(nxt.first, now, nxt.second);
            }
    }

    UndirectedWeightedTree() = default;
    UndirectedWeightedTree(int N) : V(N), E(0), adj(N) {
        lgV = 1;
        while (1 << lgV < V) lgV++;
    }

    void add_edge(int u, int v, T w) {
        adj[u].emplace_back(v, E);
        adj[v].emplace_back(u, E);
        // edge.emplace_back(u, v);
        weight.emplace_back(w);
        E++;
    }

    std::vector<std::vector<int>> doubling;
    void _doubling_precalc() {
        doubling.assign(lgV, std::vector<int>(V));
        doubling[0] = par;
        for (int d = 0; d < lgV - 1; d++)
            for (int i = 0; i < V; i++) {
                if (doubling[d][i] == INVALID)
                    doubling[d + 1][i] = INVALID;
                else
                    doubling[d + 1][i] = doubling[d][doubling[d][i]];
            }
    }

    void fix_root(int r) {
        root = r;
        par.resize(V);
        depth.resize(V);
        depth[r] = 0;
        acc_weight.resize(V);
        acc_weight[r] = 0;
        _fix_root_dfs(root, INVALID, INVALID);
        _doubling_precalc();
    }

    int kth_parent(int x, int k) const {
        if (depth[x] < k) return INVALID;
        for (int d = 0; d < lgV; d++) {
            if (x == INVALID) return INVALID;
            if (k & (1 << d)) x = doubling[d][x];
        }
        return x;
    }

    int lowest_common_ancestor(int u, int v) const {
        if (depth[u] > depth[v]) std::swap(u, v);

        v = kth_parent(v, depth[v] - depth[u]);
        if (u == v) return u;
        for (int d = lgV - 1; d >= 0; d--) {
            if (doubling[d][u] != doubling[d][v]) u = doubling[d][u], v = doubling[d][v];
        }
        return par[u];
    }

    T path_length(int u, int v) const {
        // Not distance, but the sum of weights
        int r = lowest_common_ancestor(u, v);
        return (acc_weight[u] - acc_weight[r]) + (acc_weight[v] - acc_weight[r]);
    }

    int s_to_t_by_k_steps(int s, int t, int k) const {
        int l = lowest_common_ancestor(s, t);
        int dsl = depth[s] - depth[l], dtl = depth[t] - depth[l];
        if (k > dsl + dtl) {
            return INVALID;
        } else if (k < dsl) {
            return kth_parent(s, k);
        } else if (k == dsl) {
            return l;
        } else {
            return kth_parent(t, dsl + dtl - k);
        }
    }
};


int main() {
    int N, K;
    cin >> N >> K;

    vector<vector<int>> to(N);

    UnionFind uf(N);
    UndirectedWeightedTree<int> tree(N);

    int p = -1, q = -1;
    REP(i, N) {
        int a, b;
        cin >> a >> b;
        --a, --b;
        if (uf.unite(a, b)) {
            to[a].push_back(b);
            to[b].push_back(a);
            tree.add_edge(a, b, 1);
        } else {
            p = a, q = b;
        }
    }

    tree.fix_root(0);

    dbg(to);
    dbg(make_tuple(p, q));

    int d = tree.path_length(p, q);
    dbg(d);
    const int v = d + 1;

    vector<mint> dp0(v), dp1(v);
    dp0.at(0) = 1;
    FOR(i, 1, v) {
        dp0.at(i) += dp1.at(i - 1);
        dp1.at(i) += dp0.at(i - 1) * (K - 1);
        dp1.at(i) += dp1.at(i - 1) * (K - 2);
    }
    dbg(dp0);
    dbg(dp1);

    cout << dp1.back() * mint(K - 1).pow(N - v) * K << endl;
}
0