結果
問題 | No.2531 Coloring Vertices on Namori |
ユーザー | 👑 emthrm |
提出日時 | 2023-11-03 22:01:29 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 212 ms / 2,000 ms |
コード長 | 7,877 bytes |
コンパイル時間 | 3,611 ms |
コンパイル使用メモリ | 266,528 KB |
実行使用メモリ | 43,132 KB |
最終ジャッジ日時 | 2024-09-25 20:19:35 |
合計ジャッジ時間 | 8,526 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 90 ms
36,980 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 96 ms
36,860 KB |
testcase_08 | AC | 182 ms
36,984 KB |
testcase_09 | AC | 143 ms
36,856 KB |
testcase_10 | AC | 156 ms
36,984 KB |
testcase_11 | AC | 94 ms
43,052 KB |
testcase_12 | AC | 95 ms
43,132 KB |
testcase_13 | AC | 93 ms
43,060 KB |
testcase_14 | AC | 149 ms
36,856 KB |
testcase_15 | AC | 159 ms
36,984 KB |
testcase_16 | AC | 147 ms
36,980 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 1 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 188 ms
35,648 KB |
testcase_21 | AC | 180 ms
35,860 KB |
testcase_22 | AC | 212 ms
33,244 KB |
testcase_23 | AC | 197 ms
31,560 KB |
testcase_24 | AC | 197 ms
30,936 KB |
testcase_25 | AC | 201 ms
33,424 KB |
testcase_26 | AC | 183 ms
29,268 KB |
testcase_27 | AC | 172 ms
29,868 KB |
testcase_28 | AC | 198 ms
30,672 KB |
testcase_29 | AC | 184 ms
39,560 KB |
testcase_30 | AC | 187 ms
31,068 KB |
testcase_31 | AC | 199 ms
30,428 KB |
testcase_32 | AC | 179 ms
29,576 KB |
testcase_33 | AC | 172 ms
29,888 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <unsigned int M> struct MInt { unsigned int v; constexpr MInt() : v(0) {} constexpr MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {} static constexpr MInt raw(const int x) { MInt x_; x_.v = x; return x_; } static constexpr int get_mod() { return M; } static constexpr void set_mod(const int divisor) { assert(std::cmp_equal(divisor, M)); } static void init(const int x) { inv<true>(x); fact(x); fact_inv(x); } template <bool MEMOIZES = false> static MInt inv(const int n) { // assert(0 <= n && n < M && std::gcd(n, M) == 1); static std::vector<MInt> inverse{0, 1}; const int prev = inverse.size(); if (n < prev) return inverse[n]; if constexpr (MEMOIZES) { // "n!" and "M" must be disjoint. inverse.resize(n + 1); for (int i = prev; i <= n; ++i) { inverse[i] = -inverse[M % i] * raw(M / i); } return inverse[n]; } int u = 1, v = 0; for (unsigned int a = n, b = M; b;) { const unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(const int n) { static std::vector<MInt> factorial{1}; if (const int prev = factorial.size(); n >= prev) { factorial.resize(n + 1); for (int i = prev; i <= n; ++i) { factorial[i] = factorial[i - 1] * i; } } return factorial[n]; } static MInt fact_inv(const int n) { static std::vector<MInt> f_inv{1}; if (const int prev = f_inv.size(); n >= prev) { f_inv.resize(n + 1); f_inv[n] = inv(fact(n).v); for (int i = n; i > prev; --i) { f_inv[i - 1] = f_inv[i] * i; } } return f_inv[n]; } static MInt nCk(const int n, const int k) { if (n < 0 || n < k || k < 0) [[unlikely]] return MInt(); return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) : fact_inv(n - k) * fact_inv(k)); } static MInt nPk(const int n, const int k) { return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k); } static MInt nHk(const int n, const int k) { return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, const int k) { if (n < 0 || n < k || k < 0) [[unlikely]] return MInt(); inv<true>(k); MInt res = 1; for (int i = 1; i <= k; ++i) { res *= inv(i) * n--; } return res; } constexpr MInt pow(long long exponent) const { MInt res = 1, tmp = *this; for (; exponent > 0; exponent >>= 1) { if (exponent & 1) res *= tmp; tmp *= tmp; } return res; } constexpr MInt& operator+=(const MInt& x) { if ((v += x.v) >= M) v -= M; return *this; } constexpr MInt& operator-=(const MInt& x) { if ((v += M - x.v) >= M) v -= M; return *this; } constexpr MInt& operator*=(const MInt& x) { v = (unsigned long long){v} * x.v % M; return *this; } MInt& operator/=(const MInt& x) { return *this *= inv(x.v); } constexpr auto operator<=>(const MInt& x) const = default; constexpr MInt& operator++() { if (++v == M) [[unlikely]] v = 0; return *this; } constexpr MInt operator++(int) { const MInt res = *this; ++*this; return res; } constexpr MInt& operator--() { v = (v == 0 ? M - 1 : v - 1); return *this; } constexpr MInt operator--(int) { const MInt res = *this; --*this; return res; } constexpr MInt operator+() const { return *this; } constexpr MInt operator-() const { return raw(v ? M - v : 0); } constexpr MInt operator+(const MInt& x) const { return MInt(*this) += x; } constexpr MInt operator-(const MInt& x) const { return MInt(*this) -= x; } constexpr MInt operator*(const MInt& x) const { return MInt(*this) *= x; } MInt operator/(const MInt& x) const { return MInt(*this) /= x; } friend std::ostream& operator<<(std::ostream& os, const MInt& x) { return os << x.v; } friend std::istream& operator>>(std::istream& is, MInt& x) { long long v; is >> v; x = MInt(v); return is; } }; using ModInt = MInt<MOD>; struct UnicyclicGraph { std::vector<bool> is_in_loop; std::vector<int> belong, mapping, loop; std::vector<std::vector<int>> invs; std::vector<std::vector<std::vector<int>>> forest; explicit UnicyclicGraph(const int n) : is_in_loop(n, false), belong(n, -1), mapping(n, -1), n(n), graph(n) {} void add_edge(const int src, const int dst) { const int id = srcs.size(); srcs.emplace_back(src); dsts.emplace_back(dst); graph[src].emplace_back(id); if (dst != src) [[likely]] graph[dst].emplace_back(id); } void build() { dfs(-1, 0); std::queue<int> que; for (const int root : loop) { const int forest_id = forest.size(); belong[root] = forest_id; mapping[root] = 0; std::vector<int> inv{root}; std::vector<std::vector<int>> tree(1); que.emplace(root); while (!que.empty()) { const int ver = que.front(); que.pop(); for (const int id : graph[ver]) { const int dst = destination(id, ver); if (belong[dst] == -1 && !is_in_loop[dst]) { const int idx = tree.size(); belong[dst] = forest_id; mapping[dst] = idx; inv.emplace_back(dst); tree[mapping[ver]].emplace_back(idx); tree.emplace_back(std::vector<int>{mapping[ver]}); que.emplace(dst); } } } if (inv.size() == 1) { belong[root] = mapping[root] = -1; } else { invs.emplace_back(inv); forest.emplace_back(tree); } } } private: const int n; std::vector<int> srcs, dsts; std::vector<std::vector<int>> graph; int destination(const int id, const int s) const { return (srcs[id] == s ? dsts : srcs)[id]; } bool dfs(const int prev_id, const int ver) { is_in_loop[ver] = true; loop.emplace_back(ver); for (const int id : graph[ver]) { if (id == prev_id) continue; const int dst = destination(id, ver); if (is_in_loop[dst]) { for (int i = loop.size() - 1; i >= 0; --i) { if (loop[i] == dst) { for (int j = 0; j < i; ++j) { is_in_loop[loop[j]] = false; } loop.erase(loop.begin(), std::next(loop.begin(), i)); return true; } } assert(false); } if (dfs(id, dst)) return true; } loop.pop_back(); is_in_loop[ver] = false; return false; } }; int main() { int n, k; cin >> n >> k; UnicyclicGraph graph(n); REP(_, n) { int u, v; cin >> u >> v; --u; --v; graph.add_edge(u, v); } graph.build(); const int l = graph.loop.size(); array<ModInt, 2> dp{0, k}; FOR(i, 1, l) { array<ModInt, 2> nxt{dp[false] * (k - 2) + dp[true] * (k - 1), dp[false]}; dp.swap(nxt); } cout << dp[false] * ModInt::raw(k - 1).pow(n - l) << '\n'; return 0; }