結果
| 問題 |
No.2531 Coloring Vertices on Namori
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2023-11-03 22:01:29 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 212 ms / 2,000 ms |
| コード長 | 7,877 bytes |
| コンパイル時間 | 3,611 ms |
| コンパイル使用メモリ | 266,528 KB |
| 実行使用メモリ | 43,132 KB |
| 最終ジャッジ日時 | 2024-09-25 20:19:35 |
| 合計ジャッジ時間 | 8,526 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 31 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <unsigned int M>
struct MInt {
unsigned int v;
constexpr MInt() : v(0) {}
constexpr MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr MInt raw(const int x) {
MInt x_;
x_.v = x;
return x_;
}
static constexpr int get_mod() { return M; }
static constexpr void set_mod(const int divisor) {
assert(std::cmp_equal(divisor, M));
}
static void init(const int x) {
inv<true>(x);
fact(x);
fact_inv(x);
}
template <bool MEMOIZES = false>
static MInt inv(const int n) {
// assert(0 <= n && n < M && std::gcd(n, M) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) return inverse[n];
if constexpr (MEMOIZES) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * raw(M / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
if (const int prev = factorial.size(); n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
if (const int prev = f_inv.size(); n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
inv<true>(k);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
constexpr MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
constexpr MInt& operator+=(const MInt& x) {
if ((v += x.v) >= M) v -= M;
return *this;
}
constexpr MInt& operator-=(const MInt& x) {
if ((v += M - x.v) >= M) v -= M;
return *this;
}
constexpr MInt& operator*=(const MInt& x) {
v = (unsigned long long){v} * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
constexpr auto operator<=>(const MInt& x) const = default;
constexpr MInt& operator++() {
if (++v == M) [[unlikely]] v = 0;
return *this;
}
constexpr MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
constexpr MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
constexpr MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
constexpr MInt operator+() const { return *this; }
constexpr MInt operator-() const { return raw(v ? M - v : 0); }
constexpr MInt operator+(const MInt& x) const { return MInt(*this) += x; }
constexpr MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
constexpr MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
using ModInt = MInt<MOD>;
struct UnicyclicGraph {
std::vector<bool> is_in_loop;
std::vector<int> belong, mapping, loop;
std::vector<std::vector<int>> invs;
std::vector<std::vector<std::vector<int>>> forest;
explicit UnicyclicGraph(const int n)
: is_in_loop(n, false), belong(n, -1), mapping(n, -1), n(n), graph(n) {}
void add_edge(const int src, const int dst) {
const int id = srcs.size();
srcs.emplace_back(src);
dsts.emplace_back(dst);
graph[src].emplace_back(id);
if (dst != src) [[likely]] graph[dst].emplace_back(id);
}
void build() {
dfs(-1, 0);
std::queue<int> que;
for (const int root : loop) {
const int forest_id = forest.size();
belong[root] = forest_id;
mapping[root] = 0;
std::vector<int> inv{root};
std::vector<std::vector<int>> tree(1);
que.emplace(root);
while (!que.empty()) {
const int ver = que.front();
que.pop();
for (const int id : graph[ver]) {
const int dst = destination(id, ver);
if (belong[dst] == -1 && !is_in_loop[dst]) {
const int idx = tree.size();
belong[dst] = forest_id;
mapping[dst] = idx;
inv.emplace_back(dst);
tree[mapping[ver]].emplace_back(idx);
tree.emplace_back(std::vector<int>{mapping[ver]});
que.emplace(dst);
}
}
}
if (inv.size() == 1) {
belong[root] = mapping[root] = -1;
} else {
invs.emplace_back(inv);
forest.emplace_back(tree);
}
}
}
private:
const int n;
std::vector<int> srcs, dsts;
std::vector<std::vector<int>> graph;
int destination(const int id, const int s) const {
return (srcs[id] == s ? dsts : srcs)[id];
}
bool dfs(const int prev_id, const int ver) {
is_in_loop[ver] = true;
loop.emplace_back(ver);
for (const int id : graph[ver]) {
if (id == prev_id) continue;
const int dst = destination(id, ver);
if (is_in_loop[dst]) {
for (int i = loop.size() - 1; i >= 0; --i) {
if (loop[i] == dst) {
for (int j = 0; j < i; ++j) {
is_in_loop[loop[j]] = false;
}
loop.erase(loop.begin(), std::next(loop.begin(), i));
return true;
}
}
assert(false);
}
if (dfs(id, dst)) return true;
}
loop.pop_back();
is_in_loop[ver] = false;
return false;
}
};
int main() {
int n, k; cin >> n >> k;
UnicyclicGraph graph(n);
REP(_, n) {
int u, v; cin >> u >> v; --u; --v;
graph.add_edge(u, v);
}
graph.build();
const int l = graph.loop.size();
array<ModInt, 2> dp{0, k};
FOR(i, 1, l) {
array<ModInt, 2> nxt{dp[false] * (k - 2) + dp[true] * (k - 1), dp[false]};
dp.swap(nxt);
}
cout << dp[false] * ModInt::raw(k - 1).pow(n - l) << '\n';
return 0;
}
emthrm