結果
問題 | No.2527 H and W |
ユーザー | Gandalfr |
提出日時 | 2023-11-03 22:05:21 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 616 ms / 2,000 ms |
コード長 | 41,877 bytes |
コンパイル時間 | 4,455 ms |
コンパイル使用メモリ | 261,392 KB |
実行使用メモリ | 78,300 KB |
最終ジャッジ日時 | 2024-09-25 20:27:59 |
合計ジャッジ時間 | 20,990 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 596 ms
74,080 KB |
testcase_01 | AC | 570 ms
74,196 KB |
testcase_02 | AC | 600 ms
78,168 KB |
testcase_03 | AC | 583 ms
74,204 KB |
testcase_04 | AC | 591 ms
78,168 KB |
testcase_05 | AC | 583 ms
74,200 KB |
testcase_06 | AC | 592 ms
78,296 KB |
testcase_07 | AC | 586 ms
74,072 KB |
testcase_08 | AC | 616 ms
78,296 KB |
testcase_09 | AC | 610 ms
78,168 KB |
testcase_10 | AC | 596 ms
78,168 KB |
testcase_11 | AC | 589 ms
74,072 KB |
testcase_12 | AC | 586 ms
78,300 KB |
testcase_13 | AC | 592 ms
78,168 KB |
testcase_14 | AC | 596 ms
78,168 KB |
testcase_15 | AC | 588 ms
74,072 KB |
testcase_16 | AC | 606 ms
78,168 KB |
testcase_17 | AC | 593 ms
78,168 KB |
testcase_18 | AC | 600 ms
78,164 KB |
testcase_19 | AC | 596 ms
78,164 KB |
testcase_20 | AC | 601 ms
78,296 KB |
testcase_21 | AC | 587 ms
78,168 KB |
testcase_22 | AC | 585 ms
78,300 KB |
testcase_23 | AC | 587 ms
78,164 KB |
testcase_24 | AC | 590 ms
78,296 KB |
testcase_25 | AC | 588 ms
78,168 KB |
ソースコード
#line 1 "playspace/main.cpp" #include <bits/stdc++.h> #line 4 "library/gandalfr/math/Eratosthenes.hpp" #line 6 "library/gandalfr/math/Eratosthenes.hpp" #line 6 "library/gandalfr/math/enumeration_utility.hpp" #line 1 "library/atcoder/modint.hpp" #line 6 "library/atcoder/modint.hpp" #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif #line 1 "library/atcoder/internal_math.hpp" #line 5 "library/atcoder/internal_math.hpp" #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #line 1 "library/atcoder/internal_type_traits.hpp" #line 7 "library/atcoder/internal_type_traits.hpp" namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #line 14 "library/atcoder/modint.hpp" namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder #line 4 "library/gandalfr/math/formal_power_series.hpp" #line 1 "library/atcoder/convolution.hpp" #line 9 "library/atcoder/convolution.hpp" #line 1 "library/atcoder/internal_bit.hpp" #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #line 12 "library/atcoder/convolution.hpp" namespace atcoder { namespace internal { template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly(std::vector<mint>& a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i <= cnt2 - 2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } for (int ph = 1; ph <= h; ph++) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint now = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sum_e[bsf(~(unsigned int)(s))]; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly_inv(std::vector<mint>& a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i <= cnt2 - 2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } for (int ph = h; ph >= 1; ph--) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint inow = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val(); } inow *= sum_ie[bsf(~(unsigned int)(s))]; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution_naive(const std::vector<mint>& a, const std::vector<mint>& b) { int n = int(a.size()), m = int(b.size()); std::vector<mint> ans(n + m - 1); if (n < m) { for (int j = 0; j < m; j++) { for (int i = 0; i < n; i++) { ans[i + j] += a[i] * b[j]; } } } else { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } } return ans; } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) { int n = int(a.size()), m = int(b.size()); int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } } // namespace internal template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(const std::vector<mint>& a, const std::vector<mint>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value>* = nullptr> std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint<mod>; std::vector<mint> a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector<T> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector<long long> convolution_ll(const std::vector<long long>& a, const std::vector<long long>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution<MOD1>(a, b); auto c2 = convolution<MOD2>(a, b); auto c3 = convolution<MOD3>(a, b); std::vector<long long> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; // B = 2^63, -B <= x, r(real value) < B // (x, x - M, x - 2M, or x - 3M) = r (mod 2B) // r = c1[i] (mod MOD1) // focus on MOD1 // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B) // r = x, // x - M' + (0 or 2B), // x - 2M' + (0, 2B or 4B), // x - 3M' + (0, 2B, 4B or 6B) (without mod!) // (r - x) = 0, (0) // - M' + (0 or 2B), (1) // -2M' + (0 or 2B or 4B), (2) // -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1) // we checked that // ((1) mod MOD1) mod 5 = 2 // ((2) mod MOD1) mod 5 = 3 // ((3) mod MOD1) mod 5 = 4 long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder #line 7 "library/gandalfr/math/formal_power_series.hpp" // https://web.archive.org/web/20220813112322/https://opt-cp.com/fps-implementation/#toc2 template<class T> struct FormalPowerSeries : public std::vector<T> { using std::vector<T>::vector; using std::vector<T>::operator=; using F = FormalPowerSeries; F operator-() const { F res(*this); for (auto &e : res) e = -e; return res; } F &operator*=(const T &g) { for (auto &e : *this) e *= g; return *this; } F &operator/=(const T &g) { assert(g != T(0)); *this *= g.inv(); return *this; } F &operator+=(const F &g) { int n = (*this).size(), m = g.size(); for(int i = 0; i < std::min(n, m); ++i) (*this)[i] += g[i]; return *this; } F &operator-=(const F &g) { int n = (*this).size(), m = g.size(); for(int i = 0; i < std::min(n, m); ++i) (*this)[i] -= g[i]; return *this; } F &operator<<=(const int d) { int n = (*this).size(); (*this).insert((*this).begin(), d, 0); (*this).resize(n); return *this; } F &operator>>=(const int d) { int n = (*this).size(); (*this).erase((*this).begin(), (*this).begin() + std::min(n, d)); (*this).resize(n); return *this; } F inv(int d = -1) const { int n = (*this).size(); assert(n != 0 && (*this)[0] != 0); if (d == -1) d = n; assert(d > 0); F res{(*this)[0].inv()}; while ((int)res.size() < d) { int m = size(res); F f(begin(*this), begin(*this) + std::min(n, 2*m)); F r(res); f.resize(2*m), atcoder::internal::butterfly(f); r.resize(2*m), atcoder::internal::butterfly(r); for(int i = 0; i < 2 * m; ++i) f[i] *= r[i]; atcoder::internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + m); f.resize(2*m), atcoder::internal::butterfly(f); for(int i = 0; i < 2 * m; ++i) f[i] *= r[i]; atcoder::internal::butterfly_inv(f); T iz = T(2*m).inv(); iz *= -iz; for(int i = 0; i < m; ++i) f[i] *= iz; res.insert(res.end(), f.begin(), f.begin() + m); } return {res.begin(), res.begin() + d}; } // fast: FMT-friendly modulus only F &operator*=(const F &g) { int n = (*this).size(); *this = convolution(*this, g); (*this).resize(n); return *this; } F &operator/=(const F &g) { int n = (*this).size(); *this = convolution(*this, g.inv(n)); (*this).resize(n); return *this; } // naive F &naive_mult(const F &g) { int n = (*this).size(), m = g.size(); for(int i = n - 1; i >= 0; --i) { (*this)[i] *= g[0]; for(int j = 1; j < std::min(i+1, m); ++j) (*this)[i] += (*this)[i-j] * g[j]; } return *this; } F &naive_div(const F &g) { assert(g[0] != T(0)); T ig0 = g[0].inv(); int n = (*this).size(), m = g.size(); for(int i = 0; i < n; ++i) { for(int j = 1; j < std::min(i+1, m); ++j) (*this)[i] -= (*this)[i-j] * g[j]; (*this)[i] *= ig0; } return *this; } // sparse F &sparse_mult(const std::vector<std::pair<int, T>> &g) { int n = (*this).size(); auto [d, c] = g.front(); if (d == 0) g.erase(g.begin()); else c = 0; for(int i = n - 1; i >= 0; --i) { (*this)[i] *= c; for (auto &[j, b] : g) { if (j > i) break; (*this)[i] += (*this)[i-j] * b; } } return *this; } F &sparse_div(const std::vector<std::pair<int, T>> &g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); for(int i = 0; i < n; ++i) { for (auto &[j, b] : g) { if (j > i) break; (*this)[i] -= (*this)[i-j] * b; } (*this)[i] *= ic; } return *this; } F &operator^=(long long n) { if (n == 0) { std::fill(this->begin(), this->end(), T(0)); (*this)[0] = 1; return *this; } F f(*this); --n; while (n > 0) { if (n & 1) *this *= f; f = f * f; n >>= 1; } return *this; } // multiply and divide (1 + cz^d) void multiply(const int d, const T c) { int n = (*this).size(); if (c == T(1)) for(int i = n - d - 1; i >= 0; --i) (*this)[i+d] += (*this)[i]; else if (c == T(-1)) for(int i = n - d - 1; i >= 0; --i) (*this)[i+d] -= (*this)[i]; else for(int i = n - d - 1; i >= 0; --i) (*this)[i+d] += (*this)[i] * c; } void divide(const int d, const T c) { int n = (*this).size(); if (c == T(1)) for(int i = 0; i < n - d; ++i) (*this)[i+d] -= (*this)[i]; else if (c == T(-1)) for(int i = 0; i < n - d; ++i) (*this)[i+d] += (*this)[i]; else for(int i = 0; i < n - d; ++i) (*this)[i+d] -= (*this)[i] * c; } T eval(const T &a) const { T x(1), res(0); for (auto e : *this) res += e * x, x *= a; return res; } friend F operator*(const T &g, const F &f) { return F(f) *= g; } friend F operator/(const T &g, const F &f) { return F(f) /= g; } friend F operator+(const F &f1, const F &f2) { return F(f1) += f2; } friend F operator-(const F &f1, const F &f2) { return F(f1) -= f2; } friend F operator<<(const F &f, const int d) { return F(f) <<= d; } friend F operator>>(const F &f, const int d) { return F(f) >>= d; } friend F operator*(const F &f1, const F &f2) { return F(f1) *= f2; } friend F operator/(const F &f1, const F &f2) { return F(f1) /= f2; } friend F operator*(const F &f, const std::vector<std::pair<int, T>> &g) { return F(f) *= g; } friend F operator/(const F &f, const std::vector<std::pair<int, T>> &g) { return F(f) /= g; } friend F operator^(const F &f, long long g) { return F(f) ^= g; } }; #line 9 "library/gandalfr/math/enumeration_utility.hpp" template <class T> T power(T x, long long n) { T ret = static_cast<T>(1); while (n > 0) { if (n & 1) ret = ret * x; x = x * x; n >>= 1; } return ret; } long long power(long long x, long long n) { long long ret = 1; while (n > 0) { if (n & 1) ret = ret * x; x = x * x; n >>= 1; } return ret; } long long power(long long x, long long n, int MOD) { long long ret = 1; x %= MOD; while (n > 0) { if (n & 1) ret = ret * x % MOD; x = x * x % MOD; n >>= 1; } return ret; } long long power(long long x, long long n, long long MOD) { long long ret = 1; x %= MOD; while (n > 0) { if (n & 1) ret = (__int128_t)ret * x % MOD; x = (__int128_t)x * x % MOD; n >>= 1; } return ret; } template <int m> class factorial { private: static inline std::vector<atcoder::static_modint<m>> fact{1}; public: factorial() = delete; ~factorial() = delete; static atcoder::static_modint<m> get(int n) { while (n >= (int)fact.size()) fact.push_back(fact.back() * fact.size()); return fact[n]; } }; atcoder::modint1000000007 (*fact1000000007)(int) = factorial<1000000007>::get; atcoder::modint998244353 (*fact998244353)(int) = factorial<998244353>::get; template <int m> static atcoder::static_modint<m> permutation(int n, int k) { assert(0 <= k && k <= n); return factorial<m>::get(n) / factorial<m>::get(n - k); } atcoder::modint1000000007 (*perm1000000007)(int, int) = permutation<1000000007>; atcoder::modint998244353 (*perm998244353)(int, int) = permutation<998244353>; template <int m> static atcoder::static_modint<m> combnation(int n, int k) { assert(0 <= k && k <= n); return factorial<m>::get(n) / (factorial<m>::get(k) * factorial<m>::get(n - k)); } atcoder::modint1000000007 (*comb1000000007)(int, int) = combnation<1000000007>; atcoder::modint998244353 (*comb998244353)(int, int) = combnation<998244353>; template <int m> static FormalPowerSeries<atcoder::static_modint<m>> Bernoulli_number(int n) { assert(0 <= n); FormalPowerSeries<atcoder::static_modint<m>> F(n, 0); F[0] = 1; for (int i = 1; i < n; ++i) { F[i] = F[i - 1] / (i + 1); } F = F.inv(); for (int i = 0; i < n; ++i) { F[i] *= factorial<m>::get(i); } return F; } FormalPowerSeries<atcoder::modint998244353> (*Bernoulli998244353)(int) = Bernoulli_number<998244353>; #line 8 "library/gandalfr/math/Eratosthenes.hpp" /** * @see https://drken1215.hatenablog.com/entry/2023/05/23/233000 */ bool MillerRabin(long long N, const std::vector<long long> &A) { long long s = 0, d = N - 1; while (d % 2 == 0) { ++s; d >>= 1; } for (auto a : A) { if (N <= a) return true; long long t, x = power(a, d, N); if (x != 1) { for (t = 0; t < s; ++t) { if (x == N - 1) break; x = (__int128_t)x * x % N; } if (t == s) return false; } } return true; } /** * @brief 素数判定や列挙をサポートするクラス * @brief 素数篩を固定サイズで構築、それをもとに素数列挙などを行う * @attention 構築サイズが (2^23) でおよそ 0.5s */ class Eratosthenes { protected: static inline int seive_size = (1 << 23); static inline std::vector<bool> sieve; static inline std::vector<int> primes{2, 3}, movius, min_factor; static void make_table() { sieve.assign(seive_size, true); sieve[0] = sieve[1] = false; movius.assign(seive_size, 1); min_factor.assign(seive_size, 1); for (int i = 2; i <= seive_size; ++i) { if (!sieve[i]) continue; movius[i] = -1; min_factor[i] = i; primes.push_back(i); for (int j = i * 2; j < seive_size; j += i) { sieve[j] = false; movius[j] = ((j / i) % i == 0 ? 0 : -movius[j]); if (min_factor[j] == 1) min_factor[j] = i; } } } static std::vector<std::pair<long long, int>> fast_factorize(long long n) { std::vector<std::pair<long long, int>> ret; while (n > 1) { if (ret.empty() || ret.back().first != min_factor[n]) { ret.push_back({min_factor[n], 1}); } else { ret.back().second++; } n /= min_factor[n]; } return ret; } static std::vector<std::pair<long long, int>> naive_factorize(long long n) { std::vector<std::pair<long long, int>> ret; for (long long p : primes) { if (n == 1 || p * p > n) break; while (n % p == 0) { if (ret.empty() || ret.back().first != p) ret.push_back({p, 1}); else ret.back().second++; n /= p; } } if (n != 1) ret.push_back({n, 1}); return ret; } public: Eratosthenes() = delete; ~Eratosthenes() = delete; static void set_sieve_size(int size) { assert(sieve.empty()); seive_size = size; } /** * @brief n が素数かを判定 */ static bool is_prime(long long n) { if (sieve.empty()) make_table(); assert(1 <= n); if (n > 2 && (n & 1LL) == 0) { return false; } else if (n < seive_size) { return sieve[n]; } else if (n < 4759123141LL) { return MillerRabin(n, {2, 7, 61}); } else { return MillerRabin( n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } } /** * @brief 素因数分解する * @return factorize(p1^e1 * p2^e2 * ...) => {{p1, e1}, {p2, e2], ...}, * @return factorize(1) => {} */ static std::vector<std::pair<long long, int>> factorize(long long n) { if (sieve.empty()) make_table(); assert(1 <= n); if (n < seive_size) { return fast_factorize(n); } else { return naive_factorize(n); } } static int Movius(int n) { if (movius.empty()) make_table(); assert(1 <= n); return movius.at(n); } /** * @brief 約数列挙 * @attention if n < sieve_size : O(N^(1/loglogN)) */ template <bool sort = true> static std::vector<long long> divisors(long long n) { std::vector<long long> ds; auto facs(factorize(n)); auto rec = [&](auto self, long long d, int cu) -> void { if (cu == (int)facs.size()) { ds.push_back(d); return; } for (int e = 0; e <= facs[cu].second; ++e) { self(self, d, cu + 1); d *= facs[cu].first; } }; rec(rec, 1LL, 0); if constexpr (sort) std::sort(ds.begin(), ds.end()); return ds; ; } /** * @brief オイラーのトーシェント関数 */ static long long totient(long long n) { long long ret = 1; for (auto [b, e] : factorize(n)) ret *= power(b, e - 1) * (b - 1); return ret; } static int kth_prime(int k) { return primes.at(k); } }; #line 8 "library/gandalfr/other/io_supporter.hpp" #line 10 "library/gandalfr/other/io_supporter.hpp" template <typename T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) { for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != (int)v.size() ? " " : ""); return os; } template <typename T> std::ostream &operator<<(std::ostream &os, const std::set<T> &st) { for (const T &x : st) { std::cout << x << " "; } return os; } template <typename T> std::ostream &operator<<(std::ostream &os, const std::multiset<T> &st) { for (const T &x : st) { std::cout << x << " "; } return os; } template <typename T> std::ostream &operator<<(std::ostream &os, const std::deque<T> &dq) { for (const T &x : dq) { std::cout << x << " "; } return os; } template <typename T1, typename T2> std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &p) { os << p.first << ' ' << p.second; return os; } template <typename T> std::ostream &operator<<(std::ostream &os, std::queue<T> &q) { int sz = q.size(); while (--sz) { os << q.front() << ' '; q.push(q.front()); q.pop(); } os << q.front(); q.push(q.front()); q.pop(); return os; } namespace atcoder { template <int m> std::ostream &operator<<(std::ostream &os, const static_modint<m> &mi) { os << mi.val(); return os; } template <int m> std::ostream &operator<<(std::ostream &os, const dynamic_modint<m> &mi) { os << mi.val(); return os; } } template <typename T> std::istream &operator>>(std::istream &is, std::vector<T> &v) { for (T &in : v) is >> in; return is; } template <typename T1, typename T2> std::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) { is >> p.first >> p.second; return is; } namespace atcoder { template <int m> std::istream &operator>>(std::istream &is, static_modint<m> &mi) { long long n; is >> n; mi = n; return is; } template <int m> std::istream &operator>>(std::istream &is, dynamic_modint<m> &mi) { long long n; is >> n; mi = n; return is; } } #line 5 "playspace/main.cpp" using namespace std; using ll = long long; const int INF = 1001001001; const ll INFLL = 1001001001001001001; const ll MOD = 1000000007; const ll _MOD = 998244353; #define rep(i, j, n) for(ll i = (ll)(j); i < (ll)(n); i++) #define rrep(i, j, n) for(ll i = (ll)(n-1); i >= (ll)(j); i--) #define all(a) (a).begin(),(a).end() #define debug(a) std::cerr << #a << ": " << a << std::endl #define LF cout << endl template<typename T1, typename T2> inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template<typename T1, typename T2> inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } void Yes(bool ok){ std::cout << (ok ? "Yes" : "No") << std::endl; } int main(void){ ll H, W, K; cin >> H >> W >> K; atcoder::modint998244353 ans = 0; for (auto h: Eratosthenes::divisors(K)) { auto w = K / h; if (h <= H && w <= W) { ans += comb998244353(H, h) * comb998244353(W, w); } } cout << ans << endl; }