結果

問題 No.2527 H and W
ユーザー pmankirai
提出日時 2023-11-03 22:47:52
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 30 ms / 2,000 ms
コード長 9,662 bytes
コンパイル時間 1,878 ms
コンパイル使用メモリ 198,276 KB
最終ジャッジ日時 2025-02-17 18:39:20
ジャッジサーバーID
(参考情報)
judge4 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define rep1(i, n) for (int i = 1; i <= (n); i++)
#define rrep(i, n) for (int i = n - 1; i >= 0; i--)
#define rrep1(i, n) for (int i = n; i >= 1; i--)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define eb emplace_back
#define fi first
#define se second
#define sz(x) (int)(x).size()
template <class T> using V = vector<T>;
template <class T> using VV = V<V<T>>;
typedef long long int ll;
void speedUpIO() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
}
template <class T> bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T> bool chmin(T& a, const T& b) {
if (b < a) {
a = b;
return true;
}
return false;
}
#ifndef ATCODER_MODINT_HPP
#define ATCODER_MODINT_HPP 1
#include <atcoder/internal_math>
#include <atcoder/internal_type_traits>
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint
: internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() {
return m;
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) {
_v = ((unsigned int)(v) % umod());
}
unsigned int val() const {
return _v;
}
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) {
return *this = *this * rhs.inv();
}
mint operator+() const {
return *this;
}
mint operator-() const {
return mint() - *this;
}
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() {
return m;
}
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() {
return (int)(bt.umod());
}
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) {
_v = ((unsigned int)(v) % mod());
}
unsigned int val() const {
return _v;
}
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) {
return *this = *this * rhs.inv();
}
mint operator+() const {
return *this;
}
mint operator-() const {
return mint() - *this;
}
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() {
return bt.umod();
}
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T> using is_static_modint =
std::is_base_of<internal::static_modint_base, T>;
template <class T> using is_static_modint_t =
std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id> struct is_dynamic_modint<dynamic_modint<id>>
: public std::true_type {};
template <class T> using is_dynamic_modint_t =
std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#endif // ATCODER_MODINT_HPP
/*--------------------------------------------------*/
typedef pair<int, int> P;
typedef atcoder::modint998244353 mint;
const int INF = 1e9;
const ll LINF = 1e18;
const int MX = 100010;
// combination mod prime
struct combination {
V<mint> fact, ifact;
combination(int n) : fact(n + 1), ifact(n + 1) {
fact[0] = 1;
for (int i = 1; i <= n; ++i) fact[i] = fact[i - 1] * i;
ifact[n] = fact[n].inv();
for (int i = n; i >= 1; --i) ifact[i - 1] = ifact[i] * i;
}
mint nCk(int n, int k) {
if (k < 0 || k > n) return 0;
return fact[n] * ifact[k] * ifact[n - k];
}
};
void solve() {
ll H, W, K;
cin >> H >> W >> K;
K = H * W - K;
mint ans = 0;
combination cmb(max(H, W));
if (K == H * W) {
rep(w, W + 1) ans += cmb.nCk(W, w);
rep(h, H + 1) ans += cmb.nCk(H, h);
ans -= 1;
cout << ans.val() << endl;
return;
}
rep(h, H) {
if ((K - W * h) % (H - h) != 0) continue;
ll w = (K - W * h) / (H - h);
if (!(0 <= w && w <= W)) continue;
ans += cmb.nCk(H, h) * cmb.nCk(W, w);
}
cout << ans.val() << endl;
}
int main() {
speedUpIO();
int t = 1;
// cin >> t;
while (t--) {
solve();
// cout << solve() << "\n";
// cout << (solve() ? "YES" : "NO") << "\n";
// cout << fixed << setprecision(15) << solve() << "\n";
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0