結果
問題 | No.2531 Coloring Vertices on Namori |
ユーザー | ecottea |
提出日時 | 2023-11-03 23:15:16 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 113 ms / 2,000 ms |
コード長 | 7,986 bytes |
コンパイル時間 | 4,209 ms |
コンパイル使用メモリ | 265,308 KB |
実行使用メモリ | 34,164 KB |
最終ジャッジ日時 | 2024-09-25 21:26:55 |
合計ジャッジ時間 | 7,548 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 75 ms
34,164 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 73 ms
34,164 KB |
testcase_08 | AC | 103 ms
34,036 KB |
testcase_09 | AC | 113 ms
34,036 KB |
testcase_10 | AC | 105 ms
34,032 KB |
testcase_11 | AC | 45 ms
15,032 KB |
testcase_12 | AC | 45 ms
15,028 KB |
testcase_13 | AC | 45 ms
15,036 KB |
testcase_14 | AC | 100 ms
34,160 KB |
testcase_15 | AC | 103 ms
34,032 KB |
testcase_16 | AC | 102 ms
34,036 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 1 ms
5,376 KB |
testcase_19 | AC | 1 ms
5,376 KB |
testcase_20 | AC | 80 ms
14,464 KB |
testcase_21 | AC | 79 ms
14,368 KB |
testcase_22 | AC | 87 ms
14,328 KB |
testcase_23 | AC | 79 ms
14,276 KB |
testcase_24 | AC | 83 ms
14,328 KB |
testcase_25 | AC | 80 ms
14,336 KB |
testcase_26 | AC | 87 ms
14,284 KB |
testcase_27 | AC | 86 ms
14,336 KB |
testcase_28 | AC | 87 ms
14,464 KB |
testcase_29 | AC | 89 ms
14,336 KB |
testcase_30 | AC | 87 ms
14,428 KB |
testcase_31 | AC | 83 ms
14,448 KB |
testcase_32 | AC | 85 ms
14,388 KB |
testcase_33 | AC | 87 ms
14,328 KB |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620; double EPS = 1e-15; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define YES(b) {cout << ((b) ? "YES\n" : "NO\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 矩形内判定 // 汎用関数の定義 template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline T get(T set, int i) { return (set >> i) & T(1); } // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define gcd __gcd #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif //【グラフの入力】O(n + m) /* * (始点, 終点) の組からなる入力を受け取り,n 頂点 m 辺のグラフを構築して返す. * * n : グラフの頂点の数 * m : グラフの辺の数(省略すれば n-1) * undirected : 無向グラフか(省略すれば true) * one_indexed : 入力が 1-indexed か(省略すれば true) */ Graph read_Graph(int n, int m = -1, bool undirected = true, bool one_indexed = true) { // verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_bi Graph g(n); if (m == -1) m = n - 1; rep(i, m) { int a, b; cin >> a >> b; if (one_indexed) { --a; --b; } g[a].push_back(b); if (undirected) g[b].push_back(a); } return g; } //【閉路抽出(無向グラフ)】O(n + m) /* * 無向グラフ g に単純閉路があれば頂点を順に vs に,辺を順に es に格納し,その長さを返す(無ければ -1) * vs[0] から出て vs[1] に入る辺を es[0] とする. */ template <class E> int cycle_detection(const vector<vector<E>>& g, vi& vs, vector<E>* es = nullptr) { // verify : https://judge.yosupo.jp/problem/cycle_detection_undirected int n = sz(g); vb seen(n); vs.clear(); if (es != nullptr) es->clear(); // s : 注目頂点,p : 親 // 戻り値 : 検出した閉路の末端(-1: 未検出,-2: 抽出完了) function<int(int, int)> dfs = [&](int s, int p) { // 既に訪れたことのある頂点に辿り着いたら閉路を検出したことになる. if (seen[s]) { vs.push_back(s); return s; } seen[s] = true; // s から辿れる頂点 t それぞれについて repe(t, g[s]) { // 親には戻らない(長さ 2 は閉路と認めない) if (t == p) continue; // t に対して深さ優先探索を行う. auto end = dfs(t, s); // 閉路が検出できなかったなら何もせず次の t を考える. if (end == -1) continue; // s が検出した閉路の末端であれば,閉路の記録をここで終わる. if (end == s || end == -2) { if (es != nullptr && end == s) es->push_back(t); return -2; } // 検出した閉路を逆順に記録していく. if (end >= 0) { vs.push_back(s); if (es != nullptr) es->push_back(t); } return end; } return -1; }; // 各頂点 v について rep(v, n) { // 既になぞった連結成分に属する頂点なら何もしない. if (seen[v]) continue; // v から深さ優先探索を始める. int end = dfs(v, v); // 閉路を検出していたら終了. if (end != -1) { if (es != nullptr) { auto e = es->back(); es->pop_back(); reverse(all(vs)); reverse(all(*es)); es->push_back(e); } return sz(vs); } } return -1; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n, k; cin >> n >> k; auto g = read_Graph(n, n); vi vs; int L = cycle_detection(g, vs); dump(L); mint res = mint(k - 1).pow(L) + mint(-1).pow(L) * (k - 1); res *= mint(k - 1).pow(n - L); cout << res << endl; }