結果

問題 No.2526 Kth Not-divisible Number
ユーザー yassu0320yassu0320
提出日時 2023-11-04 18:38:35
言語 Nim
(2.0.2)
結果
TLE  
実行時間 -
コード長 44,400 bytes
コンパイル時間 4,667 ms
コンパイル使用メモリ 79,208 KB
実行使用メモリ 13,756 KB
最終ジャッジ日時 2024-09-25 22:13:55
合計ジャッジ時間 8,603 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
13,756 KB
testcase_01 AC 3 ms
6,940 KB
testcase_02 AC 1 ms
6,944 KB
testcase_03 TLE -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

import algorithm
import deques
import options
import sequtils
import sets
import std/heapqueue
import std/math
import std/tables
import strformat
import strutils

#{.checks: off.}
{.warning[UnusedImport]: off.}
{.hint[XDeclaredButNotUsed]: off.}

const letter: string = "abcdefghijklmnopqrstuvwxyz"
const Letter: string = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
const MAX_INT: int = high(int)
const MIN_INT: int = low(int)
const MOD998244353 = 998_244_353
const MOD1000000007 = 1_000_000_007

proc scanf(formatstr: cstring){.header: "<stdio.h>", varargs.}
proc getchar(): char {.header: "<stdio.h>", varargs.}
proc nextInt(): int = scanf("%lld", addr result)
proc nextInts(n: int): seq[int] =
    var res = newSeq[int](n)
    for i in 0..<n:
        res[i] = nextInt()
    return res

proc nextInt64(): int64 = scanf("%lld", addr result)
proc nextUInt64(): uint64 = scanf("%lld", addr result)
proc nextFloat(): float = scanf("%lf", addr result)
proc nextFloats(n: int): seq[float] =
    var res = newSeq[float](n)
    for i in 0..<n:
        res[i] = nextFloat()
    return res
proc nextString(): string =
    var get = false
    result = ""
    while true:
        var c = getchar()
        if int(c) > int(' '):
            get = true
            result.add(c)
        else:
            if get: break
            get = false

func toInt(b: bool): int =
    if b:
        return 1
    else:
        return 0

func `+`(a, b: bool): bool = a or b
func `*`(a, b: bool): bool = a and b
func `+`(a: var bool, b: bool): bool = a = a or b
func `*`(a: var bool, b: bool): bool = a = a and b
func `+`(a: int, b: bool): int = a + (b.toInt)
func `+`(a: bool, b: int): int = (a.toInt) + b
func `-`(a: int, b: bool): int = a - (b.toInt)
func `-`(a: bool, b: int): int = (a.toInt) - b
func `*`(a: int, b: bool): int = a * (b.toInt)
func `*`(a: bool, b: int): int = (a.toInt) * b

func `|`(a, b: bool): bool = a or b
proc `|=`(a: var bool, b: bool) =
    a = a or b
func `|`(c1, c2: int): int = c1 or c2

func `&`(a, b: bool): bool = a and b
proc `&=`(a: var bool, b: bool) =
    a = a and b
func `&`(c1, c2: int): int = c1 and c2

func `//`(a, b: int): int = a div b

proc `//=`(a: var int, b: int) =
    a = a div b

func `%`(a: int, b: Positive): int =
    result = a mod b
    if result < 0:
        result += b

proc `%=`(a: var int, b: int) =
    a = a mod b

func `<<`(a: int, s: int): int = a shl s
func `>>`(a: int, s: int): int = a shr s
proc `>>=`(a: var int, b: int) =
    a = a shr b
proc `[]`(n, i: Natural): int = (n >> i) & 1

func ceil(b, a: int): int = (a+b-1) div a
func all(a: openArray[bool]): bool =
    result = true
    for x in a:
        result &= x

func any(a: openArray[bool]): bool =
    result = false
    for x in a:
        result |= x

# Z/mo Z上のaの逆元
func inv(a, mo: int): int =
    var r = (mo, a)
    var x = (0, 1)
    while r[1] != 0:
        x = (x[1], (x[0] - (r[0] div r[1]) * x[1]) % mo)
        r = (r[1], r[0] % r[1])

    if r[0] == 1:
        return x[0]
    else:
        return -1

func bitLength(n: Natural): int =
    result = 0
    var num = abs(n)
    while num > 0:
        result += 1
        num = num shr 1

proc chmax[T](a: var T, vars: varargs[T]): bool {.discardable.} =
    let target = max(vars)
    if a < target:
        a = target
        return true
    else:
        return false

proc chmin[T](a: var T, vars: varargs[T]): bool {.discardable.} =
    let target = min(vars)
    if a > target:
        a = target
        return true
    else:
        return false

template present(a: typed): bool = a.len != 0
template empty(a: typed): bool = a.len == 0

template rep(idx: untyped, n: SomeOrdinal, act: untyped): untyped =
    for idx in 0 ..< n:
        act

template loop(body: untyped): untyped =
    while true:
        body

func Yn(cond: bool, yes: string = "Yes", no: string = "No"): string =
    if cond:
        yes
    else:
        no

func `<`[T](u, v: openArray[T]): bool =
    assert u.len == v.len
    for j in 0..<u.len:
        if u[j] != v[j]:
            return u[j]-v[j] < 0

    return true

template pass() = discard

template pass(x: typed) = discard x

# start coding
# start coding
# bigint {{{
## Arbitrary precision integers.
##
## The bitwise operations behave as if negative numbers were represented in 2's complement.
## Ref: https://github.com/nim-lang/bigints/blob/master/src/bigints.nim

import std/[algorithm, bitops, math, options]

type
    BigInt* = object
        ## An arbitrary precision integer.
        # Invariants for `a: BigInt`:
        # * if `a` is non-zero: `a.limbs[a.limbs.high] != 0`
        # * if `a` is zero: `a.limbs.len <= 1`
        limbs: seq[uint32]
        isNegative: bool


# forward declarations
func succ*(a: BigInt, b: int = 1): BigInt
func inc*(a: var BigInt, b: int = 1)
func dec*(a: var BigInt, b: int = 1)


func normalize(a: var BigInt) =
    for i in countdown(a.limbs.high, 0):
        if a.limbs[i] > 0'u32:
            a.limbs.setLen(i+1)
            return
    a.limbs.setLen(1)

func initBigInt*(vals: sink seq[uint32], isNegative = false): BigInt =
    ## Initializes a `BigInt` from a sequence of `uint32` values.
    runnableExamples:
        let a = @[10'u32, 2'u32].initBigInt
        let b = 10 + 2 shl 32
        assert $a == $b
    result.limbs = vals
    result.isNegative = isNegative
    normalize(result)

func initBigInt*[T: int8|int16|int32](val: T): BigInt =
    if val < 0:
        result.limbs = @[(not val).uint32 + 1] # manual 2's complement (to avoid overflow)
        result.isNegative = true
    else:
        result.limbs = @[val.uint32]
        result.isNegative = false

func initBigInt*[T: uint8|uint16|uint32](val: T): BigInt =
    result.limbs = @[val.uint32]

func initBigInt*(val: int64): BigInt =
    var a = val.uint64
    if val < 0:
        a = not a + 1 # 2's complement
        result.isNegative = true
    if a > uint32.high:
        result.limbs = @[(a and uint32.high).uint32, (a shr 32).uint32]
    else:
        result.limbs = @[a.uint32]

func initBigInt*(val: uint64): BigInt =
    if val > uint32.high:
        result.limbs = @[(val and uint32.high).uint32, (val shr 32).uint32]
    else:
        result.limbs = @[val.uint32]

when sizeof(int) == 4:
    template initBigInt*(val: int): BigInt = initBigInt(val.int32)
    template initBigInt*(val: uint): BigInt = initBigInt(val.uint32)
else:
    template initBigInt*(val: int): BigInt = initBigInt(val.int64)
    template initBigInt*(val: uint): BigInt = initBigInt(val.uint64)

func initBigInt*(val: BigInt): BigInt =
    result = val

const
    zero = initBigInt(0)
    one = initBigInt(1)

func isZero(a: BigInt): bool {.inline.} =
    a.limbs.len == 0 or (a.limbs.len == 1 and a.limbs[0] == 0)

func abs*(a: BigInt): BigInt =
    # Returns the absolute value of `a`.
    runnableExamples:
        assert abs(42.initBigInt) == 42.initBigInt
        assert abs(-12.initBigInt) == 12.initBigInt
    result = a
    result.isNegative = false

func unsignedCmp(a: BigInt, b: uint32): int64 =
    # ignores the sign of `a`
    # `a` and `b` are assumed to not be zero
    result = int64(a.limbs.len) - 1
    if result != 0: return
    result = int64(a.limbs[0]) - int64(b)

func unsignedCmp(a: uint32, b: BigInt): int64 = -unsignedCmp(b, a)

func unsignedCmp(a, b: BigInt): int64 =
    # ignores the signs of `a` and `b`
    # `a` and `b` are assumed to not be zero
    result = int64(a.limbs.len) - int64(b.limbs.len)
    if result != 0: return
    for i in countdown(a.limbs.high, 0):
        result = int64(a.limbs[i]) - int64(b.limbs[i])
        if result != 0:
            return

func cmp(a, b: BigInt): int64 =
    ## Returns:
    ## * a value less than zero, if `a < b`
    ## * a value greater than zero, if `a > b`
    ## * zero, if `a == b`
    if a.isZero:
        if b.isZero:
            return 0
        elif b.isNegative:
            return 1
        else:
            return -1
    elif a.isNegative:
        if b.isZero or not b.isNegative:
            return -1
        else:
            return unsignedCmp(b, a)
    else: # a > 0
        if b.isZero or b.isNegative:
            return 1
        else:
            return unsignedCmp(a, b)

func cmp(a: BigInt, b: int32): int64 =
    ## Returns:
    ## * a value less than zero, if `a < b`
    ## * a value greater than zero, if `a > b`
    ## * zero, if `a == b`
    if a.isZero:
        return -b.int64
    elif a.isNegative:
        if b < 0:
            return unsignedCmp((not b).uint32 + 1, a)
        else:
            return -1
    else: # a > 0
        if b <= 0:
            return 1
        else:
            return unsignedCmp(a, b.uint32)

func cmp(a: int32, b: BigInt): int64 = -cmp(b, a)

func `==`*(a, b: BigInt): bool =
    ## Compares if two `BigInt` numbers are equal.
    runnableExamples:
        let
            a = 5.initBigInt
            b = 3.initBigInt
            c = 2.initBigInt
        assert a == b + c
        assert b != c
    cmp(a, b) == 0

func `<`*(a, b: BigInt): bool =
    runnableExamples:
        let
            a = 5.initBigInt
            b = 3.initBigInt
            c = 2.initBigInt
        assert b < a
        assert b > c
    cmp(a, b) < 0

func `<=`*(a, b: BigInt): bool =
    runnableExamples:
        let
            a = 5.initBigInt
            b = 3.initBigInt
            c = 2.initBigInt
        assert a <= b + c
        assert c <= b
    cmp(a, b) <= 0

func `==`(a: BigInt, b: int32): bool = cmp(a, b) == 0
func `<`(a: BigInt, b: int32): bool = cmp(a, b) < 0
func `<`(a: int32, b: BigInt): bool = cmp(a, b) < 0

template addParts(toAdd) =
    tmp += toAdd
    a.limbs[i] = uint32(tmp and uint32.high)
    tmp = tmp shr 32

func unsignedAdditionInt(a: var BigInt, b: BigInt, c: uint32) =
    let bl = b.limbs.len
    a.limbs.setLen(bl)

    var tmp: uint64 = uint64(c)
    for i in 0 ..< bl:
        addParts(uint64(b.limbs[i]))
    if tmp > 0'u64:
        a.limbs.add(uint32(tmp))
    a.isNegative = false

func unsignedAddition(a: var BigInt, b, c: BigInt) =
    let
        bl = b.limbs.len
        cl = c.limbs.len
    var m = min(bl, cl)
    a.limbs.setLen(max(bl, cl))

    var tmp = 0'u64
    for i in 0 ..< m:
        addParts(uint64(b.limbs[i]) + uint64(c.limbs[i]))
    if bl < cl:
        for i in m ..< cl:
            addParts(uint64(c.limbs[i]))
    else:
        for i in m ..< bl:
            addParts(uint64(b.limbs[i]))
    if tmp > 0'u64:
        a.limbs.add(uint32(tmp))
    a.isNegative = false

func negate(a: var BigInt) =
    a.isNegative = not a.isNegative

func `-`*(a: BigInt): BigInt =
    ## Unary minus for `BigInt`.
    runnableExamples:
        let
            a = 5.initBigInt
            b = -10.initBigInt
        assert (-a) == -5.initBigInt
        assert (-b) == 10.initBigInt
    result = a
    negate(result)

template realUnsignedSubtractionInt(a: var BigInt, b: BigInt, c: uint32) =
    # b > c
    let bl = b.limbs.len
    a.limbs.setLen(bl)

    var tmp = int64(c)
    for i in 0 ..< bl:
        tmp = int64(uint32.high) + 1 + int64(b.limbs[i]) - tmp
        a.limbs[i] = uint32(tmp and int64(uint32.high))
        tmp = 1 - (tmp shr 32)
    a.isNegative = false

    normalize(a)
    assert tmp == 0

template realUnsignedSubtraction(a: var BigInt, b, c: BigInt) =
    # b > c
    let
        bl = b.limbs.len
        cl = c.limbs.len
    var m = min(bl, cl)
    a.limbs.setLen(max(bl, cl))

    var tmp = 0'i64
    for i in 0 ..< m:
        tmp = int64(uint32.high) + 1 + int64(b.limbs[i]) - int64(c.limbs[i]) - tmp
        a.limbs[i] = uint32(tmp and int64(uint32.high))
        tmp = 1 - (tmp shr 32)
    if bl < cl:
        for i in m ..< cl:
            tmp = int64(uint32.high) + 1 - int64(c.limbs[i]) - tmp
            a.limbs[i] = uint32(tmp and int64(uint32.high))
            tmp = 1 - (tmp shr 32)
        a.isNegative = true
    else:
        for i in m ..< bl:
            tmp = int64(uint32.high) + 1 + int64(b.limbs[i]) - tmp
            a.limbs[i] = uint32(tmp and int64(uint32.high))
            tmp = 1 - (tmp shr 32)
        a.isNegative = false

    normalize(a)
    assert tmp == 0

func unsignedSubtractionInt(a: var BigInt, b: BigInt, c: uint32) =
    # `b` is not zero
    let cmpRes = unsignedCmp(b, c)
    if cmpRes > 0:
        realUnsignedSubtractionInt(a, b, c)
    elif cmpRes < 0:
        # `b` is only a single limb
        a.limbs = @[c - b.limbs[0]]
        a.isNegative = true
    else: # b == c
        a = zero

func unsignedSubtraction(a: var BigInt, b, c: BigInt) =
    let cmpRes = unsignedCmp(b, c)
    if cmpRes > 0:
        realUnsignedSubtraction(a, b, c)
    elif cmpRes < 0:
        realUnsignedSubtraction(a, c, b)
        a.negate()
    else: # b == c
        a = zero

func additionInt(a: var BigInt, b: BigInt, c: int32) =
    # a = b + c
    if b.isZero:
        a = c.initBigInt
    elif b.isNegative:
        if c < 0:
            unsignedAdditionInt(a, b, (not c).uint32 + 1)
        else:
            unsignedSubtractionInt(a, b, c.uint32)
        a.negate()
    else:
        if c < 0:
            unsignedSubtractionInt(a, b, (not c).uint32 + 1)
        else:
            unsignedAdditionInt(a, b, c.uint32)

func addition(a: var BigInt, b, c: BigInt) =
    # a = b + c
    if b.isNegative:
        if c.isNegative:
            unsignedAddition(a, b, c)
            a.isNegative = true
        else:
            unsignedSubtraction(a, c, b)
    else:
        if c.isNegative:
            unsignedSubtraction(a, b, c)
        else:
            unsignedAddition(a, b, c)

func `+`*(a, b: BigInt): BigInt =
    ## Addition for `BigInt`s.
    runnableExamples:
        let
            a = 5.initBigInt
            b = 10.initBigInt
        assert a + b == 15.initBigInt
        assert (-a) + b == 5.initBigInt
        assert a + (-b) == -5.initBigInt
    addition(result, a, b)

template `+=`*(a: var BigInt, b: BigInt) =
    runnableExamples:
        var a = 5.initBigInt
        a += 2.initBigInt
        assert a == 7.initBigInt
    a = a + b

func subtractionInt(a: var BigInt, b: BigInt, c: int32) =
    # a = b - c
    if b.isZero:
        a = -c.initBigInt
    elif b.isNegative:
        if c < 0:
            unsignedSubtractionInt(a, b, (not c).uint32 + 1)
        else:
            unsignedAdditionInt(a, b, c.uint32)
        a.negate()
    else:
        if c < 0:
            unsignedAdditionInt(a, b, (not c).uint32 + 1)
        else:
            unsignedSubtractionInt(a, b, c.uint32)

func subtraction(a: var BigInt, b, c: BigInt) =
    # a = b - c
    if b.isNegative:
        if c.isNegative:
            unsignedSubtraction(a, c, b)
        else:
            unsignedAddition(a, b, c)
            a.isNegative = true
    else:
        if c.isNegative:
            unsignedAddition(a, b, c)
        else:
            unsignedSubtraction(a, b, c)

func `-`*(a, b: BigInt): BigInt =
    ## Subtraction for `BigInt`s.
    runnableExamples:
        let
            a = 15.initBigInt
            b = 10.initBigInt
        assert a - b == 5.initBigInt
        assert (-a) - b == -25.initBigInt
        assert a - (-b) == 25.initBigInt
    subtraction(result, a, b)

template `-=`*(a: var BigInt, b: BigInt) =
    runnableExamples:
        var a = 5.initBigInt
        a -= 2.initBigInt
        assert a == 3.initBigInt
    a = a - b


func unsignedMultiplication(a: var BigInt, b, c: BigInt) {.inline.} =
    # always called with bl >= cl
    let
        bl = b.limbs.len
        cl = c.limbs.len
    a.limbs.setLen(bl + cl)
    var tmp = 0'u64

    for i in 0 ..< bl:
        tmp += uint64(b.limbs[i]) * uint64(c.limbs[0])
        a.limbs[i] = uint32(tmp and uint32.high)
        tmp = tmp shr 32

    a.limbs[bl] = uint32(tmp)

    for j in 1 ..< cl:
        tmp = 0'u64
        for i in 0 ..< bl:
            tmp += uint64(a.limbs[j + i]) + uint64(b.limbs[i]) * uint64(c.limbs[j])
            a.limbs[j + i] = uint32(tmp and uint32.high)
            tmp = tmp shr 32
        var pos = j + bl
        while tmp > 0'u64:
            tmp += uint64(a.limbs[pos])
            a.limbs[pos] = uint32(tmp and uint32.high)
            tmp = tmp shr 32
            inc pos
    normalize(a)

func multiplication(a: var BigInt, b, c: BigInt) =
    # a = b * c
    if b.isZero or c.isZero:
        a = zero
        return
    let
        bl = b.limbs.len
        cl = c.limbs.len

    if cl > bl:
        unsignedMultiplication(a, c, b)
    else:
        unsignedMultiplication(a, b, c)
    a.isNegative = b.isNegative xor c.isNegative

func `*`*(a, b: BigInt): BigInt =
    ## Multiplication for `BigInt`s.
    runnableExamples:
        let
            a = 421.initBigInt
            b = 200.initBigInt
        assert a * b == 84200.initBigInt
    multiplication(result, a, b)

template `*=`*(a: var BigInt, b: BigInt) =
    runnableExamples:
        var a = 15.initBigInt
        a *= 10.initBigInt
        assert a == 150.initBigInt
    a = a * b

func pow*(x: BigInt, y: Natural): BigInt =
    ## Computes `x` to the power of `y`.
    var base = x
    var exp = y
    result = one

    # binary exponentiation
    while exp > 0:
        if (exp and 1) > 0:
            result *= base
        exp = exp shr 1
        base *= base

func `shl`*(x: BigInt, y: Natural): BigInt =
    ## Shifts a `BigInt` to the left.
    runnableExamples:
        let a = 24.initBigInt
        assert a shl 1 == 48.initBigInt
        assert a shl 2 == 96.initBigInt

    if x.isZero:
        return x

    var carry = 0'u64
    let a = y div 32
    let b = uint32(y mod 32)
    let mask = ((1'u64 shl b) - 1) shl (64 - b)
    result.limbs.setLen(x.limbs.len + a)
    result.isNegative = x.isNegative

    for i in countup(0, x.limbs.high):
        let acc = (uint64(x.limbs[i]) shl 32) or carry
        carry = (acc and mask) shr 32
        result.limbs[i + a] = uint32((acc shl b) shr 32)

    if carry > 0:
        result.limbs.add(uint32(carry shr (32 - b)))

func `shr`*(x: BigInt, y: Natural): BigInt =
    ## Shifts a `BigInt` to the right (arithmetically).
    runnableExamples:
        let a = 24.initBigInt
        assert a shr 1 == 12.initBigInt
        assert a shr 2 == 6.initBigInt

    var carry = 0'u64
    let a = y div 32
    if a >= x.limbs.len:
        return zero
    let b = uint32(y mod 32)
    let mask = (1'u32 shl b) - 1
    result.limbs.setLen(x.limbs.len - a)
    result.isNegative = x.isNegative

    for i in countdown(x.limbs.high, a):
        let acc = (carry shl 32) or x.limbs[i]
        carry = acc and mask
        result.limbs[i - a] = uint32(acc shr b)

    if result.isNegative:
        var underflow = false
        if carry > 0:
            underflow = true
        else:
            for i in 0 .. a - 1:
                if x.limbs[i] > 0:
                    underflow = true
                    break

        if underflow:
            dec result

    if result.limbs.len > 1 and result.limbs[result.limbs.high] == 0:
        # normalize
        result.limbs.setLen(result.limbs.high)


# bitwise operations

func invertIn(a: BigInt): BigInt {.inline.} =
    result = a
    result.isNegative = false
    dec(result)

func invertOut(a: var BigInt) {.inline.} =
    inc(a)
    a.isNegative = true

func `not`*(a: BigInt): BigInt =
    ## Bitwise `not` for `BigInt`s.
    # 2's complement: -x = not x + 1 <=> not x = -x - 1 = -(x + 1)
    result = succ(a)
    negate(result)

func `and`*(a, b: BigInt): BigInt =
    ## Bitwise `and` for `BigInt`s.
    if a.isNegative and not a.isZero:
        if b.isNegative and not b.isZero:
            # - and -
            let a = invertIn(a)
            let b = invertIn(b)
            result.limbs.setLen(max(a.limbs.len, b.limbs.len))
            let m = min(a.limbs.len, b.limbs.len)
            for i in 0 ..< m:
                result.limbs[i] = a.limbs[i] or b.limbs[i]
            for i in m ..< a.limbs.len:
                result.limbs[i] = a.limbs[i]
            for i in m ..< b.limbs.len:
                result.limbs[i] = b.limbs[i]
            invertOut(result)
        else:
            # - and +
            let a = invertIn(a)
            result = b
            for i in 0 ..< min(a.limbs.len, b.limbs.len):
                result.limbs[i] = (not a.limbs[i]) and b.limbs[i]
    else:
        if b.isNegative and not b.isZero:
            # + and -
            let b = invertIn(b)
            result = a
            for i in 0 ..< min(a.limbs.len, b.limbs.len):
                result.limbs[i] = a.limbs[i] and (not b.limbs[i])
        else:
            # + and +
            result.limbs.setLen(min(a.limbs.len, b.limbs.len))
            for i in 0 ..< result.limbs.len:
                result.limbs[i] = a.limbs[i] and b.limbs[i]
    normalize(result)

func `or`*(a, b: BigInt): BigInt =
    ## Bitwise `or` for `BigInt`s.
    if a.isNegative and not a.isZero:
        if b.isNegative and not b.isZero:
            # - or -
            let a = invertIn(a)
            let b = invertIn(b)
            result.limbs.setLen(min(a.limbs.len, b.limbs.len))
            for i in 0 ..< result.limbs.len:
                result.limbs[i] = a.limbs[i] and b.limbs[i]
            invertOut(result)
        else:
            # - or +
            let a = invertIn(a)
            result = a
            for i in 0 ..< min(a.limbs.len, b.limbs.len):
                result.limbs[i] = a.limbs[i] and (not b.limbs[i])
            invertOut(result)
    else:
        if b.isNegative and not b.isZero:
            # + or -
            let b = invertIn(b)
            result = b
            for i in 0 ..< min(a.limbs.len, b.limbs.len):
                result.limbs[i] = (not a.limbs[i]) and b.limbs[i]
            invertOut(result)
        else:
            # + or +
            result.limbs.setLen(max(a.limbs.len, b.limbs.len))
            let m = min(a.limbs.len, b.limbs.len)
            for i in 0 ..< m:
                result.limbs[i] = a.limbs[i] or b.limbs[i]
            for i in m ..< a.limbs.len:
                result.limbs[i] = a.limbs[i]
            for i in m ..< b.limbs.len:
                result.limbs[i] = b.limbs[i]
    normalize(result)

func `xor`*(a, b: BigInt): BigInt =
    ## Bitwise `xor` for `BigInt`s.
    if a.isNegative and not a.isZero:
        if b.isNegative and not b.isZero:
            # - xor -
            let a = invertIn(a)
            let b = invertIn(b)
            result.limbs.setLen(max(a.limbs.len, b.limbs.len))
            let m = min(a.limbs.len, b.limbs.len)
            for i in 0 ..< m:
                result.limbs[i] = a.limbs[i] xor b.limbs[i]
            for i in m ..< a.limbs.len:
                result.limbs[i] = a.limbs[i]
            for i in m ..< b.limbs.len:
                result.limbs[i] = b.limbs[i]
        else:
            # - xor +
            let a = invertIn(a)
            result.limbs.setLen(max(a.limbs.len, b.limbs.len))
            let m = min(a.limbs.len, b.limbs.len)
            for i in 0 ..< m:
                result.limbs[i] = a.limbs[i] xor b.limbs[i]
            for i in m ..< a.limbs.len:
                result.limbs[i] = a.limbs[i]
            for i in m ..< b.limbs.len:
                result.limbs[i] = b.limbs[i]
            invertOut(result)
    else:
        if b.isNegative and not b.isZero:
            # + xor -
            let b = invertIn(b)
            result.limbs.setLen(max(a.limbs.len, b.limbs.len))
            let m = min(a.limbs.len, b.limbs.len)
            for i in 0 ..< m:
                result.limbs[i] = a.limbs[i] xor b.limbs[i]
            for i in m ..< a.limbs.len:
                result.limbs[i] = a.limbs[i]
            for i in m ..< b.limbs.len:
                result.limbs[i] = b.limbs[i]
            invertOut(result)
        else:
            # + xor +
            result.limbs.setLen(max(a.limbs.len, b.limbs.len))
            let m = min(a.limbs.len, b.limbs.len)
            for i in 0 ..< m:
                result.limbs[i] = a.limbs[i] xor b.limbs[i]
            for i in m ..< a.limbs.len:
                result.limbs[i] = a.limbs[i]
            for i in m ..< b.limbs.len:
                result.limbs[i] = b.limbs[i]
    normalize(result)


func reset(a: var BigInt) =
    ## Resets a `BigInt` back to the zero value.
    a.limbs.setLen(1)
    a.limbs[0] = 0
    a.isNegative = false

func unsignedDivRem(q: var BigInt, r: var uint32, n: BigInt, d: uint32) =
    q.limbs.setLen(n.limbs.len)
    r = 0
    for i in countdown(n.limbs.high, 0):
        let tmp = uint64(n.limbs[i]) + uint64(r) shl 32
        q.limbs[i] = uint32(tmp div d)
        r = uint32(tmp mod d)
    normalize(q)

func bits(d: uint32): int =
    const bitLengths = [0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
                        5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
    var d = d
    while d >= 32'u32:
        result += 6
        d = d shr 6
    result += bitLengths[int(d)]

# From Knuth and Python
func unsignedDivRem(q, r: var BigInt, n, d: BigInt) =
    var
        nn = n.limbs.len
        dn = d.limbs.len

    if n.isZero:
        q = zero
        r = zero
    elif nn < dn:
        # n < d
        q = zero
        r = n
    elif dn == 1:
        var x: uint32
        unsignedDivRem(q, x, n, d.limbs[0])
        r.limbs = @[x]
        r.isNegative = false
    else:
        assert nn >= dn and dn >= 2

        # normalize
        let ls = 32 - bits(d.limbs[d.limbs.high])
        r = d shl ls
        q = n shl ls
        if q.limbs.len > n.limbs.len or q.limbs[q.limbs.high] >= r.limbs[r.limbs.high]:
            q.limbs.add(0'u32)
            inc(nn)

        let k = nn - dn
        assert k >= 0
        var a: BigInt
        a.limbs.setLen(k)
        let wm1 = r.limbs[r.limbs.high]
        let wm2 = r.limbs[r.limbs.high-1]
        var ak = k

        var zhi = zero
        var z = zero
        var qib = zero
        var q1b = zero

        for v in countdown(k-1, 0):
            # estimate quotient digit, may rarely overestimate by 1
            let vtop = q.limbs[v + dn]
            assert vtop <= wm1
            let vv = (uint64(vtop) shl 32) or q.limbs[v+dn-1]
            var q1 = vv div wm1
            var r1 = vv mod wm1

            while (wm2 * q1) > ((r1 shl 32) or q.limbs[v+dn-2]):
                dec q1
                r1 += wm1
                if r1 > uint32.high:
                    break

            assert q1 <= uint32.high

            q1b.limbs[0] = uint32(q1)

            # subtract
            zhi.reset()
            for i in 0 ..< dn:
                z.reset()
                z.limbs[0] = r.limbs[i]
                z *= q1b
                z.isNegative = true
                z += zhi
                var z1 = z
                qib.limbs[0] = q.limbs[v+i]
                z += qib

                if z < 0:
                    q.limbs[v+i] = not z.limbs[0] + 1
                else:
                    q.limbs[v+i] = z.limbs[0]

                if z.limbs.len > 1:
                    zhi.limbs[0] = z1.limbs[1]
                    if z1.limbs[0] > qib.limbs[0]:
                        zhi.limbs[0] += 1
                    zhi.isNegative = true
                elif z < 0:
                    zhi.limbs[0] = 1
                    zhi.isNegative = true
                else:
                    zhi.reset()

            # add back if was too large (rare branch)
            if vtop.initBigInt + zhi < 0:
                var carry = 0'u64
                for i in 0 ..< dn:
                    carry += q.limbs[v+i]
                    carry += r.limbs[i]
                    q.limbs[v+i] = uint32(carry and uint32.high)
                    carry = carry shr 32
                dec(q1)

            # store quotient digit
            assert q1 <= uint32.high
            dec(ak)
            a.limbs[ak] = uint32(q1)

        # unshift remainder, we reuse w1 to store the result
        q.limbs.setLen(dn)
        r = q shr ls

        normalize(r)
        q = a
        normalize(q)

func division(q, r: var BigInt, n, d: BigInt) =
    # q = n div d
    # r = n mod d
    if d.isZero:
        raise newException(DivByZeroDefect, "division by zero")

    unsignedDivRem(q, r, n, d)

    q.isNegative = n < 0 xor d < 0
    r.isNegative = n < 0 and r != 0

    # divrem -> divmod
    if (r < 0 and d > 0) or (r > 0 and d < 0):
        r += d
        q -= one

func `div`*(a, b: BigInt): BigInt =
    ## Computes the integer division of two `BigInt` numbers.
    ## Raises a `DivByZeroDefect` if `b` is zero.
    ##
    ## If you also need the modulo (remainder), use the `divmod func <#divmod,BigInt,BigInt>`_.
    runnableExamples:
        let
            a = 17.initBigInt
            b = 5.initBigInt
        assert a div b == 3.initBigInt
        assert (-a) div b == -4.initBigInt
        assert a div (-b) == -4.initBigInt
        assert (-a) div (-b) == 3.initBigInt
    var tmp: BigInt
    division(result, tmp, a, b)

func `mod`*(a, b: BigInt): BigInt =
    ## Computes the integer modulo (remainder) of two `BigInt` numbers.
    ## Raises a `DivByZeroDefect` if `b` is zero.
    ##
    ## If you also need an integer division, use the `divmod func <#divmod,BigInt,BigInt>`_.
    runnableExamples:
        let
            a = 17.initBigInt
            b = 5.initBigInt
        assert a mod b == 2.initBigInt
        assert (-a) mod b == 3.initBigInt
        assert a mod (-b) == -3.initBigInt
        assert (-a) mod (-b) == -2.initBigInt
    var tmp: BigInt
    division(tmp, result, a, b)

func divmod*(a, b: BigInt): tuple[q, r: BigInt] =
    ## Computes both the integer division and modulo (remainder) of two
    ## `BigInt` numbers.
    ## Raises a `DivByZeroDefect` if `b` is zero.
    runnableExamples:
        let
            a = 17.initBigInt
            b = 5.initBigInt
        assert divmod(a, b) == (3.initBigInt, 2.initBigInt)
    division(result.q, result.r, a, b)

func countTrailingZeroBits(a: BigInt): int =
    var count = 0
    for x in a.limbs:
        if x == 0:
            count += 32
        else:
            return count + countTrailingZeroBits(x)
    return count

func gcd*(a, b: BigInt): BigInt =
    ## Returns the greatest common divisor (GCD) of `a` and `b`.
    runnableExamples:
        assert gcd(54.initBigInt, 24.initBigInt) == 6.initBigInt

    # binary GCD algorithm
    var
        u = abs(a)
        v = abs(b)
    if u.isZero:
        return v
    elif v.isZero:
        return u
    let
        i = countTrailingZeroBits(u)
        j = countTrailingZeroBits(v)
        k = min(i, j)
    u = u shr i
    v = v shr j
    while true:
        # u and v are odd
        if u > v:
            swap(u, v)
        v -= u
        if v.isZero:
            return u shl k
        v = v shr countTrailingZeroBits(v)


func toInt*[T: SomeInteger](x: BigInt): Option[T] =
    ## Converts a `BigInt` number to an integer, if possible.
    ## If the `BigInt` doesn't fit in a `T`, returns `none(T)`;
    ## otherwise returns `some(x)`.
    runnableExamples:
        import std/options
        let
            a = 44.initBigInt
            b = 130.initBigInt
        assert toInt[int8](a) == some(44'i8)
        assert toInt[int8](b) == none(int8)
        assert toInt[uint8](b) == some(130'u8)
        assert toInt[int](b) == some(130)

    if x.isZero:
        return some(default(T)) # default(T) is 0
    when T is SomeSignedInt:
        # T is signed
        when sizeof(T) == 8:
            if x.limbs.len > 2:
                result = none(T)
            elif x.limbs.len == 2:
                if x.isNegative:
                    if x.limbs[1] > uint32(int32.high) + 1 or (x.limbs[1] == uint32(int32.high) + 1 and x.limbs[0] > 0):
                        result = none(T)
                    else:
                        let value = not T(x.limbs[1].uint64 shl 32 + x.limbs[0] - 1)
                        result = some(value)
                else:
                    if x.limbs[1] > uint32(int32.high):
                        result = none(T)
                    else:
                        let value = T(x.limbs[1].uint64 shl 32 + x.limbs[0])
                        result = some(value)
            else:
                if x.isNegative:
                    result = some(not T(x.limbs[0] - 1))
                else:
                    result = some(T(x.limbs[0]))
        else:
            if x.limbs.len > 1:
                result = none(T)
            else:
                if x.isNegative:
                    if x.limbs[0] > uint32(T.high) + 1:
                        result = none(T)
                    else:
                        result = some(not T(x.limbs[0] - 1))
                else:
                    if x.limbs[0] > uint32(T.high):
                        result = none(T)
                    else:
                        result = some(T(x.limbs[0]))
    else:
        # T is unsigned
        if x.isNegative:
            return none(T)
        when sizeof(T) == 8:
            if x.limbs.len > 2:
                result = none(T)
            elif x.limbs.len == 2:
                let value = T(x.limbs[1]) shl 32 + T(x.limbs[0])
                result = some(value)
            else:
                result = some(T(x.limbs[0]))
        else:
            if x.limbs.len > 1:
                result = none(T)
            elif x.limbs[0] > uint32(T.high):
                result = none(T)
            else:
                result = some(T(x.limbs[0]))

func calcSizes(): array[2..36, int] =
    for i in 2..36:
        var x = int64(i)
        while x <= int64(uint32.high) + 1:
            x *= i
            result[i].inc

const
    digits = "0123456789abcdefghijklmnopqrstuvwxyz"
    powers = {2'u8, 4, 8, 16, 32}
    sizes = calcSizes() # `sizes[base]` is the maximum number of digits that fully fit in a `uint32`

func toString*(a: BigInt, base: range[2..36] = 10): string =
    ## Produces a string representation of a `BigInt` in a specified
    ## `base`.
    ##
    ## Doesn't produce any prefixes (`0x`, `0b`, etc.).
    runnableExamples:
        let a = 55.initBigInt
        assert toString(a) == "55"
        assert toString(a, 2) == "110111"
        assert toString(a, 16) == "37"

    if a.isZero:
        return "0"

    let size = sizes[base]
    if base.uint8 in powers:
        let
            bits = countTrailingZeroBits(base) # bits per digit
            mask = (1'u32 shl bits) - 1
            totalBits = 32 * a.limbs.len - countLeadingZeroBits(a.limbs[a.limbs.high])
        result = newStringOfCap((totalBits + bits - 1) div bits + 1)

        var
            acc = 0'u32
            accBits = 0 # the number of bits needed for acc
        for x in a.limbs:
            acc = acc or (x shl accBits)
            accBits += 32
            while accBits >= bits:
                result.add(digits[acc and mask])
                acc = acc shr bits
                if accBits > 32:
                    acc = x shr (32 - (accBits - bits))
                accBits -= bits
        if acc > 0:
            result.add(digits[acc])
    else:
        let
            base = uint32(base)
            d = base ^ size
        var tmp = a

        tmp.isNegative = false
        result = newStringOfCap(size * a.limbs.len + 1) # estimate the length of the result

        while tmp > 0:
            var
                c: uint32
                tmpCopy = tmp
            unsignedDivRem(tmp, c, tmpCopy, d)
            for i in 1..size:
                result.add(digits[c mod base])
                c = c div base

    # normalize
    var i = result.high
    while i > 0 and result[i] == '0':
        dec i
    result.setLen(i+1)

    if a.isNegative:
        result.add('-')

    result.reverse()

func `$`*(a: BigInt): string =
    ## String representation of a `BigInt` in base 10.
    toString(a, 10)

func parseDigit(c: char, base: uint32): uint32 {.inline.} =
    result = case c
        of '0'..'9': uint32(ord(c) - ord('0'))
        of 'a'..'z': uint32(ord(c) - ord('a') + 10)
        of 'A'..'Z': uint32(ord(c) - ord('A') + 10)
        else: raise newException(ValueError, "Invalid input: " & c)

    if result >= base:
        raise newException(ValueError, "Invalid input: " & c)

func filterUnderscores(str: var string) {.inline.} =
    var k = 0 # the amount of underscores
    for i in 0 .. str.high:
        let c = str[i]
        if c == '_':
            inc k
        elif k > 0:
            str[i - k] = c
    str.setLen(str.len - k)

func initBigInt*(str: string, base: range[2..36] = 10): BigInt =
    ## Create a `BigInt` from a string. For invalid inputs, a `ValueError` exception is raised.
    runnableExamples:
        let
            a = initBigInt("1234")
            b = initBigInt("1234", base = 8)
        assert a == 1234.initBigInt
        assert b == 668.initBigInt

    if str.len == 0:
        raise newException(ValueError, "Empty input")

    let size = sizes[base]
    let base = base.uint32
    var first = 0
    var neg = false

    case str[0]
    of '-':
        if str.len == 1:
            raise newException(ValueError, "Invalid input: " & str)
        first = 1
        neg = true
    of '+':
        if str.len == 1:
            raise newException(ValueError, "Invalid input: " & str)
        first = 1
    else:
        discard
    if str[first] == '_':
        raise newException(ValueError, "A number can not begin with _")
    if str[^1] == '_':
        raise newException(ValueError, "A number can not end with _")

    if base.uint8 in powers:
        # base is a power of two, so each digit corresponds to a block of bits
        let bits = countTrailingZeroBits(base) # bits per digit
        var
            acc = 0'u32
            accBits = 0 # the number of bits needed for acc
        for i in countdown(str.high, first):
            if str[i] != '_':
                let digit = parseDigit(str[i], base)
                acc = acc or (digit shl accBits)
                accBits += bits
                if accBits >= 32:
                    result.limbs.add(acc)
                    accBits -= 32
                    acc = digit shr (bits - accBits)
        if acc > 0:
            result.limbs.add(acc)
        result.normalize()
    else:
        var str = str
        filterUnderscores(str)
        let d = initBigInt(base ^ size)
        for i in countup(first, str.high, size):
            var num = 0'u32 # the accumulator in this block
            if i + size <= str.len:
                # iterator over a block of length `size`, so we can use `d`
                for j in countup(i, i + size - 1):
                    if str[j] != '_':
                        let digit = parseDigit(str[j], base)
                        num = (num * base) + digit
                unsignedAdditionInt(result, result * d, num)
            else:
                # iterator over a block smaller than `size`, so we have to compute `mul`
                var mul = 1'u32 # the multiplication factor for num
                for j in countup(i, min(i + size - 1, str.high)):
                    if str[j] != '_':
                        let digit = parseDigit(str[j], base)
                        num = (num * base) + digit
                        mul *= base
                unsignedAdditionInt(result, result * initBigInt(mul), num)

    result.isNegative = neg

func inc*(a: var BigInt, b: int = 1) =
    ## Increase the value of a `BigInt` by the specified amount (default: 1).
    runnableExamples:
        var a = 15.initBigInt
        inc a
        assert a == 16.initBigInt
        inc(a, 7)
        assert a == 23.initBigInt

    if b in int32.low..int32.high:
        var c = a
        additionInt(a, c, b.int32)
    else:
        a += initBigInt(b)

func dec*(a: var BigInt, b: int = 1) =
    ## Decrease the value of a `BigInt` by the specified amount (default: 1).
    runnableExamples:
        var a = 15.initBigInt
        dec a
        assert a == 14.initBigInt
        dec(a, 5)
        assert a == 9.initBigInt

    if b in int32.low..int32.high:
        var c = a
        subtractionInt(a, c, b.int32)
    else:
        a -= initBigInt(b)

func succ*(a: BigInt, b: int = 1): BigInt =
    ## Returns the `b`-th successor of a `BigInt`.
    result = a
    inc(result, b)

func pred*(a: BigInt, b: int = 1): BigInt =
    ## Returns the `b`-th predecessor of a `BigInt`.
    result = a
    dec(result, b)


iterator countup*(a, b: BigInt, step: int32 = 1): BigInt =
    ## Counts from `a` up to `b` (inclusive) with the given step count.
    var res = a
    while res <= b:
        yield res
        inc(res, step)

iterator countdown*(a, b: BigInt, step: int32 = 1): BigInt =
    ## Counts from `a` down to `b` (inclusive) with the given step count.
    var res = a
    while res >= b:
        yield res
        dec(res, step)

iterator `..`*(a, b: BigInt): BigInt =
    ## Counts from `a` up to `b` (inclusive).
    var res = a
    while res <= b:
        yield res
        inc res

iterator `..<`*(a, b: BigInt): BigInt =
    ## Counts from `a` up to `b` (exclusive).
    var res = a
    while res < b:
        yield res
        inc res


func modulo(a, modulus: BigInt): BigInt =
    ## Like `mod`, but the result is always in the range `[0, modulus-1]`.
    ## `modulus` should be greater than zero.
    result = a mod modulus
    if result < 0:
        result += modulus

func fastLog2*(a: BigInt): int =
    ## Computes the logarithm in base 2 of `a`.
    ## If `a` is negative, returns the logarithm of `abs(a)`.
    ## If `a` is zero, returns -1.
    if a.isZero:
        return -1
    bitops.fastLog2(a.limbs[^1]) + 32*(a.limbs.high)


func invmod*(a, modulus: BigInt): BigInt =
    ## Compute the modular inverse of `a` modulo `modulus`.
    ## The return value is always in the range `[1, modulus-1]`
    runnableExamples:
        assert invmod(3.initBigInt, 7.initBigInt) == 5.initBigInt

    # extended Euclidean algorithm
    if modulus.isZero:
        raise newException(DivByZeroDefect, "modulus must be nonzero")
    elif modulus.isNegative:
        raise newException(ValueError, "modulus must be strictly positive")
    elif a.isZero:
        raise newException(DivByZeroDefect, "0 has no modular inverse")
    else:
        var
            r0 = modulus
            r1 = a.modulo(modulus)
            t0 = zero
            t1 = one
        var rk, tk: BigInt # otherwise t1 is incorrectly inferred as cursor (https://github.com/nim-lang/Nim/issues/19457)
        while r1 > 0:
            let q = r0 div r1
            rk = r0 - q * r1
            tk = t0 - q * t1
            r0 = r1
            r1 = rk
            t0 = t1
            t1 = tk
        if r0 != one:
            raise newException(ValueError, $a & " has no modular inverse modulo " & $modulus)
        result = t0.modulo(modulus)

func powmod*(base, exponent, modulus: BigInt): BigInt =
    ## Compute modular exponentation of `base` with power `exponent` modulo `modulus`.
    ## The return value is always in the range `[0, modulus-1]`.
    runnableExamples:
        assert powmod(2.initBigInt, 3.initBigInt, 7.initBigInt) == 1.initBigInt
    if modulus.isZero:
        raise newException(DivByZeroDefect, "modulus must be nonzero")
    elif modulus.isNegative:
        raise newException(ValueError, "modulus must be strictly positive")
    elif modulus == 1:
        return zero
    else:
        var
            base = base
            exponent = exponent
        if exponent < 0:
            base = invmod(base, modulus)
            exponent = -exponent
        var basePow = base.modulo(modulus)
        result = one
        while not exponent.isZero:
            if (exponent.limbs[0] and 1) != 0:
                result = (result * basePow) mod modulus
            basePow = (basePow * basePow) mod modulus
            exponent = exponent shr 1

proc `'bi`*(s: string): BigInt =
    ## Create a `BigInt` from a literal, using the suffix `'bi`.
    case s[0..min(s.high, 1)]
    of "0x", "0X": initBigInt(s[2..s.high], base = 16)
    of "0b", "0B": initBigInt(s[2..s.high], base = 2)
    else: initBigInt(s)
# }}}

let T = nextInt()
for _ in 0..<T:
    let
        A = nextString().initBigInt
        B = nextString().initBigInt
        K = nextString().initBigInt

    var
        left = 0'bi
        right = initBigInt("1_0000_0000_0000_0000_0000")

    while right - left > 1:
        let v = (right + left) div 2'bi
        let c = v - (v div A + v div B - v div lcm(A, B))
        if c < K:
            left = v
        else:
            right = v

    echo right
0