結果

問題 No.2587 Random Walk on Tree
ユーザー akakimidoriakakimidori
提出日時 2023-11-10 20:48:29
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 1,629 ms / 10,000 ms
コード長 21,376 bytes
コンパイル時間 15,209 ms
コンパイル使用メモリ 391,984 KB
実行使用メモリ 36,212 KB
最終ジャッジ日時 2024-09-27 12:54:54
合計ジャッジ時間 48,342 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 1 ms
6,816 KB
testcase_02 AC 1 ms
6,816 KB
testcase_03 AC 1 ms
6,812 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 1 ms
6,944 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 1 ms
6,944 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 4 ms
6,940 KB
testcase_12 AC 19 ms
6,944 KB
testcase_13 AC 27 ms
6,944 KB
testcase_14 AC 7 ms
6,940 KB
testcase_15 AC 1,309 ms
16,736 KB
testcase_16 AC 766 ms
12,428 KB
testcase_17 AC 834 ms
11,952 KB
testcase_18 AC 127 ms
6,940 KB
testcase_19 AC 1,484 ms
26,108 KB
testcase_20 AC 1,408 ms
18,032 KB
testcase_21 AC 1,485 ms
20,468 KB
testcase_22 AC 1,463 ms
36,212 KB
testcase_23 AC 1,454 ms
23,796 KB
testcase_24 AC 1,542 ms
18,648 KB
testcase_25 AC 1,149 ms
30,096 KB
testcase_26 AC 1,517 ms
19,696 KB
testcase_27 AC 1,456 ms
19,832 KB
testcase_28 AC 1,629 ms
18,424 KB
testcase_29 AC 1,555 ms
17,520 KB
testcase_30 AC 1,587 ms
17,652 KB
testcase_31 AC 1,585 ms
17,528 KB
testcase_32 AC 1,528 ms
17,140 KB
testcase_33 AC 1 ms
6,940 KB
testcase_34 AC 1,105 ms
23,044 KB
testcase_35 AC 1,130 ms
23,052 KB
testcase_36 AC 1,133 ms
22,920 KB
testcase_37 AC 1,160 ms
23,688 KB
testcase_38 AC 1,491 ms
17,488 KB
testcase_39 AC 1,507 ms
17,596 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

fn main() {
    type M = ModInt<998244353>;
    input! {
        n: usize,
        m: usize,
        s: usize1,
        t: usize1,
        e: [(usize1, usize1); n - 1],
    }
    let mut g = vec![vec![]; n];
    for (a, b) in e {
        g[a].push(b);
        g[b].push(a);
    }
    let root = s;
    let mut topo = vec![root];
    let mut parent = vec![n; n];
    for i in 0..n {
        let v = topo[i];
        for u in g[v].clone() {
            g[u].retain(|p| *p != v);
            parent[u] = v;
            topo.push(u);
        }
    }
    let mut size = vec![1i32; n];
    for &v in topo.iter().rev() {
        g[v].sort_by_key(|u| -size[*u]);
        size[v] += g[v].iter().map(|u| size[*u]).sum::<i32>();
    }
    let solve_path = |a: Vec<Vec<Vec<M>>>| -> Vec<Vec<M>> {
        let a = a
            .into_iter()
            .map(|a| {
                let mut b = vec![vec![vec![]; 2]; 2];
                b[0][1] = a[0].clone();
                b[1][0] = a[0].clone();
                b[1][1] = a[1].clone();
                b
            })
            .collect::<Vec<_>>();
        let ans = product(
            a,
            |l, r| {
                let mut res = vec![vec![vec![]; 2]; 2];
                for (a, l) in l.iter().enumerate() {
                    for (b, l) in l.iter().enumerate() {
                        for (c, r) in r.iter().enumerate() {
                            for (d, r) in r.iter().enumerate() {
                                if b + c == 1 {
                                    continue;
                                }
                                let v = l.convolution(r);
                                if (c, b) == (0, 0) {
                                    res[a][d].sub_assign(&v);
                                } else {
                                    res[a][d].add_assign(&v);
                                }
                            }
                        }
                    }
                }
                res
            },
            |a| a[1][1].len(),
        );
        vec![ans[0][1].clone(), ans[1][1].clone()]
    };
    let child_product = |a: Vec<Vec<Vec<M>>>| -> Vec<Vec<M>> {
        product(
            a,
            |a, b| {
                let mut c = vec![vec![]; 2];
                for (i, a) in a.iter().enumerate() {
                    for (j, b) in b.iter().enumerate() {
                        if (i, j) != (0, 0) {
                            c[i & j].add_assign(&a.convolution(b));
                        }
                    }
                }
                c
            },
            |a| a[1].len(),
        )
    };
    let lift = |a: Vec<Vec<M>>| -> Vec<Vec<M>> {
        let c = [[M::zero(), -M::one()], [M::one(), -M::one()]];
        let mut res = vec![vec![]; 2];
        res[0].add_assign(&c[0].convolution(&a[1]));
        res[1].add_assign(&c[1].convolution(&a[1]));
        res[1].sub_assign(&c[0].convolution(&a[0]));
        res
    };
    let calc = recurse(|rec, mut v: usize| -> Vec<Vec<M>> {
        let mut poly = vec![];
        loop {
            let mut a = g[v].iter().skip(1).map(|u| rec(*u)).collect::<Vec<_>>();
            a.push(vec![vec![], vec![M::one()]]);
            let a = child_product(a);
            poly.push(lift(a));
            if let Some(u) = g[v].get(0) {
                v = *u;
            } else {
                break;
            }
        }
        solve_path(poly)
    });
    let mut nu = vec![];
    let mut de = vec![];
    let mut pos = t;
    let mut ban = n;
    let mut geta = 0;
    loop {
        let mut a = g[pos]
            .iter()
            .filter(|p| **p != ban)
            .map(|u| calc(*u))
            .collect::<Vec<_>>();
        a.push(vec![vec![], vec![M::one()]]);
        let a = child_product(a);
        nu.push(a[1].clone());
        de.push(lift(a));
        if pos == s {
            break;
        }
        ban = pos;
        pos = parent[pos];
        geta += 1;
    }
    let mut nu = product(nu, |a, b| a.convolution(&b), |a| a.len());
    nu.splice(0..0, (0..geta).map(|_| M::zero()));
    let mut de = solve_path(de)[1].clone();
    let mut k = m;
    while k > 0 {
        let mut f = de.clone();
        for f in f[1..].iter_mut().step_by(2) {
            *f = -*f;
        }
        nu = nu
            .convolution(&f)
            .into_iter()
            .skip(k & 1)
            .step_by(2)
            .collect();
        de = de.convolution(&f).into_iter().step_by(2).collect();
        k >>= 1;
    }
    println!("{}", nu[0]);
}

fn product<T, F, G>(mut a: Vec<T>, mul: F, size: G) -> T
where
    F: Copy + Fn(T, T) -> T,
    G: Copy + Fn(&T) -> usize,
{
    assert!(!a.is_empty());
    if a.len() == 1 {
        return a.pop().unwrap();
    }
    let sum = a.iter().map(size).sum::<usize>();
    let mut c = 0;
    for i in 0..a.len() {
        if c >= sum - c || i == a.len() - 1 {
            let r = a.split_off(i);
            return mul(product(a, mul, size), product(r, mul, size));
        }
        c += size(&a[i]);
    }
    unreachable!()
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
// ---------- begin recurse ----------
// reference
// https://twitter.com/noshi91/status/1393952665566994434
// https://twitter.com/shino16_cp/status/1393933468082397190
pub fn recurse<A, R, F>(f: F) -> impl Fn(A) -> R
where
    F: Fn(&dyn Fn(A) -> R, A) -> R,
{
    fn call<A, R, F>(f: &F, a: A) -> R
    where
        F: Fn(&dyn Fn(A) -> R, A) -> R,
    {
        f(&|a| call(f, a), a)
    }
    move |a| call(&f, a)
}
// ---------- end recurse ----------
// ---------- begin modint ----------
use std::ops::*;

pub trait Zero: Sized + Add<Self, Output = Self> {
    fn zero() -> Self;
    fn is_zero(&self) -> bool;
}

pub trait One: Sized + Mul<Self, Output = Self> {
    fn one() -> Self;
    fn is_one(&self) -> bool;
}

pub trait Ring: Zero + One + Sub<Output = Self> {}

pub trait Field: Ring + Div<Output = Self> {}

pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 {
    let mut t = 1;
    while n > 0 {
        if n & 1 == 1 {
            t = (t as u64 * r as u64 % m as u64) as u32;
        }
        r = (r as u64 * r as u64 % m as u64) as u32;
        n >>= 1;
    }
    t
}

pub const fn primitive_root(p: u32) -> u32 {
    let mut m = p - 1;
    let mut f = [1; 30];
    let mut k = 0;
    let mut d = 2;
    while d * d <= m {
        if m % d == 0 {
            f[k] = d;
            k += 1;
        }
        while m % d == 0 {
            m /= d;
        }
        d += 1;
    }
    if m > 1 {
        f[k] = m;
        k += 1;
    }
    let mut g = 1;
    while g < p {
        let mut ok = true;
        let mut i = 0;
        while i < k {
            ok &= pow_mod(g, (p - 1) / f[i], p) > 1;
            i += 1;
        }
        if ok {
            break;
        }
        g += 1;
    }
    g
}

pub const fn is_prime(n: u32) -> bool {
    if n <= 1 {
        return false;
    }
    let mut d = 2;
    while d * d <= n {
        if n % d == 0 {
            return false;
        }
        d += 1;
    }
    true
}

#[derive(Clone, Copy, PartialEq, Eq)]
pub struct ModInt<const M: u32>(u32);

impl<const M: u32> ModInt<{ M }> {
    const REM: u32 = {
        let mut t = 1u32;
        let mut s = !M + 1;
        let mut n = !0u32 >> 2;
        while n > 0 {
            if n & 1 == 1 {
                t = t.wrapping_mul(s);
            }
            s = s.wrapping_mul(s);
            n >>= 1;
        }
        t
    };
    const INI: u64 = ((1u128 << 64) % M as u128) as u64;
    const IS_PRIME: () = assert!(is_prime(M));
    const PRIMITIVE_ROOT: u32 = primitive_root(M);
    const ORDER: usize = 1 << (M - 1).trailing_zeros();
    const fn reduce(x: u64) -> u32 {
        let _ = Self::IS_PRIME;
        let b = (x as u32 * Self::REM) as u64;
        let t = x + b * M as u64;
        let mut c = (t >> 32) as u32;
        if c >= M {
            c -= M;
        }
        c as u32
    }
    const fn multiply(a: u32, b: u32) -> u32 {
        Self::reduce(a as u64 * b as u64)
    }
    pub const fn new(v: u32) -> Self {
        assert!(v < M);
        Self(Self::reduce(v as u64 * Self::INI))
    }
    pub const fn const_mul(&self, rhs: Self) -> Self {
        Self(Self::multiply(self.0, rhs.0))
    }
    pub const fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::new(1);
        let mut r = *self;
        while n > 0 {
            if n & 1 == 1 {
                t = t.const_mul(r);
            }
            r = r.const_mul(r);
            n >>= 1;
        }
        t
    }
    pub const fn inv(&self) -> Self {
        assert!(self.0 != 0);
        self.pow(M as u64 - 2)
    }
    pub const fn get(&self) -> u32 {
        Self::reduce(self.0 as u64)
    }
    pub const fn zero() -> Self {
        Self::new(0)
    }
    pub const fn one() -> Self {
        Self::new(1)
    }
}

impl<const M: u32> Add for ModInt<{ M }> {
    type Output = Self;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= M {
            v -= M;
        }
        Self(v)
    }
}

impl<const M: u32> Sub for ModInt<{ M }> {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += M;
        }
        Self(v)
    }
}

impl<const M: u32> Mul for ModInt<{ M }> {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self::Output {
        self.const_mul(rhs)
    }
}

impl<const M: u32> Div for ModInt<{ M }> {
    type Output = Self;
    fn div(self, rhs: Self) -> Self::Output {
        self * rhs.inv()
    }
}

impl<const M: u32> AddAssign for ModInt<{ M }> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<const M: u32> SubAssign for ModInt<{ M }> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<const M: u32> MulAssign for ModInt<{ M }> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<const M: u32> DivAssign for ModInt<{ M }> {
    fn div_assign(&mut self, rhs: Self) {
        *self = *self / rhs;
    }
}

impl<const M: u32> Neg for ModInt<{ M }> {
    type Output = Self;
    fn neg(self) -> Self::Output {
        if self.0 == 0 {
            self
        } else {
            Self(M - self.0)
        }
    }
}

impl<const M: u32> std::fmt::Display for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::fmt::Debug for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::str::FromStr for ModInt<{ M }> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<const M: u32> From<usize> for ModInt<{ M }> {
    fn from(val: usize) -> ModInt<{ M }> {
        ModInt::new((val % M as usize) as u32)
    }
}

impl<const M: u32> Zero for ModInt<{ M }> {
    fn zero() -> Self {
        Self::zero()
    }
    fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<const M: u32> One for ModInt<{ M }> {
    fn one() -> Self {
        Self::one()
    }
    fn is_one(&self) -> bool {
        self.get() == 1
    }
}

impl<const M: u32> Ring for ModInt<{ M }> {}
impl<const M: u32> Field for ModInt<{ M }> {}

struct NTTPrecalc<const M: u32> {
    sum_e: [ModInt<{ M }>; 30],
    sum_ie: [ModInt<{ M }>; 30],
}

impl<const M: u32> NTTPrecalc<{ M }> {
    const fn new() -> Self {
        let cnt2 = (M - 1).trailing_zeros() as usize;
        let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT);
        let zeta = root.pow((M - 1) as u64 >> cnt2);
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_e = [ModInt::zero(); 30];
        let mut sum_ie = [ModInt::zero(); 30];
        let mut e = zeta;
        let mut ie = e.inv();
        let mut i = cnt2;
        while i >= 2 {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e.const_mul(e);
            ie = ie.const_mul(ie);
            i -= 1;
        }
        let mut now = ModInt::one();
        let mut inow = ModInt::one();
        let mut i = 0;
        while i < cnt2 - 1 {
            sum_e[i] = es[i].const_mul(now);
            sum_ie[i] = ies[i].const_mul(inow);
            now = ies[i].const_mul(now);
            inow = es[i].const_mul(inow);
            i += 1;
        }
        Self { sum_e, sum_ie }
    }
}

struct NTTPrecalcHelper<const MOD: u32>;
impl<const MOD: u32> NTTPrecalcHelper<MOD> {
    const A: NTTPrecalc<MOD> = NTTPrecalc::new();
}

pub trait ArrayAdd {
    type Item;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayAdd for [T]
where
    T: Zero + Copy,
{
    type Item = T;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.add_assign(rhs);
        c
    }
}

pub trait ArrayAddAssign {
    type Item;
    fn add_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayAddAssign for [T]
where
    T: Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
    }
}

impl<T> ArrayAddAssign for Vec<T>
where
    T: Zero + Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().add_assign(rhs);
    }
}

pub trait ArraySub {
    type Item;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArraySub for [T]
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.sub_assign(rhs);
        c
    }
}

pub trait ArraySubAssign {
    type Item;
    fn sub_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArraySubAssign for [T]
where
    T: Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
    }
}

impl<T> ArraySubAssign for Vec<T>
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().sub_assign(rhs);
    }
}

pub trait ArrayDot {
    type Item;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayDot for [T]
where
    T: Mul<Output = T> + Copy,
{
    type Item = T;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        assert!(self.len() == rhs.len());
        self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
    }
}

pub trait ArrayDotAssign {
    type Item;
    fn dot_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayDotAssign for [T]
where
    T: MulAssign + Copy,
{
    type Item = T;
    fn dot_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() == rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
    }
}

pub trait ArrayMul {
    type Item;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayMul for [T]
where
    T: Zero + One + Copy,
{
    type Item = T;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.is_empty() || rhs.is_empty() {
            return vec![];
        }
        let mut res = vec![T::zero(); self.len() + rhs.len() - 1];
        for (i, a) in self.iter().enumerate() {
            for (res, b) in res[i..].iter_mut().zip(rhs.iter()) {
                *res = *res + *a * *b;
            }
        }
        res
    }
}

// transform でlen=1を指定すればNTTになる
pub trait ArrayConvolution {
    type Item;
    fn transform(&mut self, len: usize);
    fn inverse_transform(&mut self, len: usize);
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<const M: u32> ArrayConvolution for [ModInt<{ M }>] {
    type Item = ModInt<{ M }>;
    fn transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<M>::A;
        for ph in 1..=k {
            let p = len << (k - ph);
            let mut now = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y * now;
                    *x = l + r;
                    *y = l - r;
                }
                now *= pre.sum_e[(!i).trailing_zeros() as usize];
            }
        }
    }
    fn inverse_transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<M>::A;
        for ph in (1..=k).rev() {
            let p = len << (k - ph);
            let mut inow = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y;
                    *x = l + r;
                    *y = (l - r) * inow;
                }
                inow *= pre.sum_ie[(!i).trailing_zeros() as usize];
            }
        }
        let ik = ModInt::new(2).inv().pow(k as u64);
        for f in f.iter_mut() {
            *f *= ik;
        }
    }
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.len().min(rhs.len()) <= 32 {
            return self.mul(rhs);
        }
        const PARAM: usize = 10;
        let size = self.len() + rhs.len() - 1;
        let mut k = 0;
        while (size + (1 << k) - 1) >> k > PARAM {
            k += 1;
        }
        let len = (size + (1 << k) - 1) >> k;
        let mut f = vec![ModInt::zero(); len << k];
        let mut g = vec![ModInt::zero(); len << k];
        f[..self.len()].copy_from_slice(self);
        g[..rhs.len()].copy_from_slice(rhs);
        f.transform(len);
        g.transform(len);
        let mut buf = [ModInt::zero(); 2 * PARAM - 1];
        let buf = &mut buf[..(2 * len - 1)];
        let pre = &NTTPrecalcHelper::<M>::A;
        let mut now = ModInt::one();
        for (i, (f, g)) in f
            .chunks_exact_mut(2 * len)
            .zip(g.chunks_exact(2 * len))
            .enumerate()
        {
            let mut r = now;
            for (f, g) in f.chunks_exact_mut(len).zip(g.chunks_exact(len)) {
                buf.fill(ModInt::zero());
                for (i, f) in f.iter().enumerate() {
                    for (buf, g) in buf[i..].iter_mut().zip(g.iter()) {
                        *buf = *buf + *f * *g;
                    }
                }
                f.copy_from_slice(&buf[..len]);
                for (f, buf) in f.iter_mut().zip(buf[len..].iter()) {
                    *f = *f + r * *buf;
                }
                r = -r;
            }
            now *= pre.sum_e[(!i).trailing_zeros() as usize];
        }
        f.inverse_transform(len);
        f.truncate(self.len() + rhs.len() - 1);
        f
    }
}
// ---------- end modint ----------
0