結果

問題 No.2468 Mercurialist
ユーザー 👑 hos.lyrichos.lyric
提出日時 2023-11-11 22:40:53
言語 D
(dmd 2.109.1)
結果
WA  
実行時間 -
コード長 5,183 bytes
コンパイル時間 2,629 ms
コンパイル使用メモリ 153,304 KB
実行使用メモリ 14,056 KB
最終ジャッジ日時 2024-09-26 02:54:28
合計ジャッジ時間 4,476 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 15 ms
9,728 KB
testcase_01 AC 16 ms
9,856 KB
testcase_02 AC 17 ms
9,728 KB
testcase_03 AC 37 ms
10,496 KB
testcase_04 AC 35 ms
11,008 KB
testcase_05 AC 51 ms
11,136 KB
testcase_06 AC 21 ms
10,496 KB
testcase_07 AC 20 ms
10,624 KB
testcase_08 WA -
testcase_09 AC 18 ms
10,240 KB
testcase_10 AC 29 ms
10,112 KB
testcase_11 AC 19 ms
10,112 KB
testcase_12 AC 17 ms
9,856 KB
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 AC 28 ms
10,368 KB
testcase_21 AC 40 ms
10,496 KB
testcase_22 AC 18 ms
9,984 KB
testcase_23 AC 22 ms
10,624 KB
testcase_24 WA -
testcase_25 AC 26 ms
10,496 KB
testcase_26 WA -
testcase_27 WA -
testcase_28 AC 35 ms
10,496 KB
testcase_29 AC 24 ms
10,240 KB
testcase_30 WA -
testcase_31 WA -
testcase_32 AC 22 ms
10,240 KB
testcase_33 AC 25 ms
10,368 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import std.conv, std.functional, std.range, std.stdio, std.string;
import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std.typecons;
import core.bitop;

class EOFException : Throwable { this() { super("EOF"); } }
string[] tokens;
string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; }
int readInt() { return readToken.to!int; }
long readLong() { return readToken.to!long; }

string COLOR(string s = "") { return "\x1b[" ~ s ~ "m"; }

bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } }
bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } }

int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; }
int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); }
int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); }

struct ModInt(uint M_) {
  import std.conv : to;
  alias M = M_;
  uint x;
  this(ModInt a) { x = a.x; }
  this(uint x_) { x = x_ % M; }
  this(ulong x_) { x = cast(uint)(x_ % M); }
  this(int x_) { x = ((x_ %= cast(int)(M)) < 0) ? (x_ + cast(int)(M)) : x_; }
  this(long x_) { x = cast(uint)(((x_ %= cast(long)(M)) < 0) ? (x_ + cast(long)(M)) : x_); }
  ref ModInt opAssign(T)(inout(T) a) if (is(T == uint) || is(T == ulong) || is(T == int) || is(T == long)) { return this = ModInt(a); }
  ref ModInt opOpAssign(string op, T)(T a) {
    static if (is(T == ModInt)) {
      static if (op == "+") { x = ((x += a.x) >= M) ? (x - M) : x; }
      else static if (op == "-") { x = ((x -= a.x) >= M) ? (x + M) : x; }
      else static if (op == "*") { x = cast(uint)((cast(ulong)(x) * a.x) % M); }
      else static if (op == "/") { this *= a.inv(); }
      else static assert(false);
      return this;
    } else static if (op == "^^") {
      if (a < 0) return this = inv()^^(-a);
      ModInt b = this, c = 1U;
      for (long e = a; e; e >>= 1) { if (e & 1) c *= b; b *= b; }
      return this = c;
    } else {
      return mixin("this " ~ op ~ "= ModInt(a)");
    }
  }
  ModInt inv() const {
    uint a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const q = a / b; const c = a - q * b; a = b; b = c; const w = y - cast(int)(q) * z; y = z; z = w; }
    assert(a == 1); return ModInt(y);
  }
  ModInt opUnary(string op)() const {
    static if (op == "+") { return this; }
    else static if (op == "-") { ModInt a; a.x = x ? (M - x) : 0U; return a; }
    else static assert(false);
  }
  ModInt opBinary(string op, T)(T a) const { return mixin("ModInt(this) " ~ op ~ "= a"); }
  ModInt opBinaryRight(string op, T)(T a) const { return mixin("ModInt(a) " ~ op ~ "= this"); }
  bool opCast(T: bool)() const { return (x != 0U); }
  string toString() const { return x.to!string; }
}

enum MO = 998244353;
alias Mint = ModInt!MO;

enum LIM_INV = 6 * 10^^5 + 10;
Mint[] inv, fac, invFac;
void prepare() {
  inv = new Mint[LIM_INV];
  fac = new Mint[LIM_INV];
  invFac = new Mint[LIM_INV];
  inv[1] = 1;
  foreach (i; 2 .. LIM_INV) {
    inv[i] = -((Mint.M / i) * inv[cast(size_t)(Mint.M % i)]);
  }
  fac[0] = invFac[0] = 1;
  foreach (i; 1 .. LIM_INV) {
    fac[i] = fac[i - 1] * i;
    invFac[i] = invFac[i - 1] * inv[i];
  }
}
Mint binom(long n, long k) {
  if (n < 0) {
    if (k >= 0) {
      return (-1)^^(k & 1) * binom(-n + k - 1, k);
    } else if (n - k >= 0) {
      return (-1)^^((n - k) & 1) * binom(-k - 1, n - k);
    } else {
      return Mint(0);
    }
  } else {
    if (0 <= k && k <= n) {
      assert(n < LIM_INV);
      return fac[cast(size_t)(n)] * invFac[cast(size_t)(k)] * invFac[cast(size_t)(n - k)];
    } else {
      return Mint(0);
    }
  }
}


void main() {
  prepare;
  
  try {
    for (; ; ) {
      const X = readInt;
      const Y = readInt;
      const Z = readInt;
      const K = readInt;
      const N = X + Y + Z;
      
      auto fs = new Mint[N + 1 + 1];
      foreach (a; K .. N + 1 + 1) {
        const i0 = min(max(N - a - K, 0), Y);
        fs[a] = Mint(a + K - X)^^i0 * (fac[N - X - i0] * invFac[N - X - Y]);
      }
      Mint ans;
      foreach (a; X .. N + 1) {
        ans += binom(a, X) * (fs[a + 1] - fs[a]);
      }
      ans *= invFac[N] * fac[X] * fac[Z];
      ans = 1 - ans;
      writeln(ans);
      
      debug {
      if (N <= 100) {
        writeln("fs = ", fs);
        Mint brt;
        foreach (a; X .. N + 1) {
          Mint prod0 = 1, prod1 = 1;
          foreach (i; 0 .. Y) {
            prod0 *= (min(a + K + i + 1, N) - X - i);
            prod1 *= (min(a + K + i    , N) - X - i);
          }
          if (N <= 10) {
            writeln(a, ": ", prod0, " ", prod1);
          }
          brt += binom(a, X) * (prod0 - prod1);
        }
        writeln("brt = ", brt);
        brt *= invFac[N] * fac[X] * fac[Z];
        brt = 1 - brt;
        writeln("brt = ", brt);
      }
      }
    }
  } catch (EOFException e) {
  }
}
0