結果

問題 No.2532 Want Play More
ユーザー 👑 p-adicp-adic
提出日時 2023-11-12 18:55:08
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 145 ms / 2,000 ms
コード長 35,400 bytes
コンパイル時間 3,217 ms
コンパイル使用メモリ 235,484 KB
実行使用メモリ 29,952 KB
最終ジャッジ日時 2024-09-26 03:03:28
合計ジャッジ時間 6,182 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3 ms
5,376 KB
testcase_01 AC 145 ms
23,720 KB
testcase_02 AC 139 ms
23,640 KB
testcase_03 AC 130 ms
23,016 KB
testcase_04 AC 122 ms
22,776 KB
testcase_05 AC 127 ms
22,272 KB
testcase_06 AC 72 ms
23,680 KB
testcase_07 AC 4 ms
5,504 KB
testcase_08 AC 6 ms
5,760 KB
testcase_09 AC 6 ms
5,760 KB
testcase_10 AC 51 ms
13,696 KB
testcase_11 AC 47 ms
13,568 KB
testcase_12 AC 86 ms
19,020 KB
testcase_13 AC 61 ms
15,232 KB
testcase_14 AC 19 ms
8,448 KB
testcase_15 AC 126 ms
23,552 KB
testcase_16 AC 103 ms
20,608 KB
testcase_17 AC 5 ms
5,760 KB
testcase_18 AC 75 ms
17,024 KB
testcase_19 AC 109 ms
20,964 KB
testcase_20 AC 3 ms
5,376 KB
testcase_21 AC 2 ms
5,376 KB
testcase_22 AC 2 ms
5,376 KB
testcase_23 AC 3 ms
5,376 KB
testcase_24 AC 3 ms
5,376 KB
testcase_25 AC 2 ms
5,376 KB
testcase_26 AC 3 ms
5,376 KB
testcase_27 AC 3 ms
5,376 KB
testcase_28 AC 78 ms
29,952 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'void Solve()':
main.cpp:476:48: warning: narrowing conversion of 'N' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing]
  476 |   DepthFirstSearchOnTree<bound_N,E<int>> dfst{ N , 0 };
      |                                                ^

ソースコード

diff #

#ifdef DEBUG
  #define _GLIBCXX_DEBUG
  #define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode ); if( exec_mode == debug_mode || exec_mode == library_search_mode ){ return 0; } else if( exec_mode == experiment_mode ){ Experiment(); return 0; } else if( exec_mode == small_test_mode ){ SmallTest(); return 0; }; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int test_case_num = 1; if( exec_mode == solve_mode ){ if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); cin >> test_case_num; } FINISH_MAIN
  #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
  #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
  #define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ cin >> A; ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { assert( false ); }
  #define SOLVE_ONLY static_assert( __FUNCTION__[0] == 'S' )
  #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
  #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl
  #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl
  #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl
  #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl
  #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl
#else
  #pragma GCC optimize ( "O3" )
  #pragma GCC optimize ( "unroll-loops" )
  #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
  #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN
  #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
  #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
  #define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
  #define SOLVE_ONLY 
  #define CERR( ... ) 
  #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << "\n"
  #define CERR_A( A , N ) 
  #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << "\n"
  #define CERR_ITR( A ) 
  #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << "\n"
#endif
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using lld = __float128;
template <typename INT> using T2 = pair<INT,INT>;
template <typename INT> using T3 = tuple<INT,INT,INT>;
template <typename INT> using T4 = tuple<INT,INT,INT,INT>;
using path = pair<int,ll>;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define FINISH_MAIN REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } }
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()
#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; }
#define CIN_A( LL , A , N ) vector<LL> A( N ); SET_A( A , N );
#define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
#define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS
#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS
#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); return
#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( #__VA_ARGS__ , ":" , naive , match ? "==" : "!=" , answer ); if( !match ){ return; }

// 入出力用
template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg , ARGS&... args ) { return VariadicCin( is >> arg , args... ); }
template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }
template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg& arg ) { return os << arg; }
template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); }

// 算術用
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }

#define POWER( ANSWER , ARGUMENT , EXPONENT )				\
  static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \
  TYPE_OF( ARGUMENT ) ANSWER{ 1 };					\
  {									\
    TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT );	\
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;			\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;	\
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\

#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO )		\
  ll ANSWER{ 1 };							\
  {									\
    ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \
    ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\

#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \
  ll ANSWER[CONSTEXPR_LENGTH];						\
  ll ANSWER_INV[CONSTEXPR_LENGTH];					\
  ll INVERSE[CONSTEXPR_LENGTH];						\
  {									\
    ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1;				\
    ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL;			\
    FOREQ( i , 1 , MAX_INDEX ){						\
      ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
    }									\
    ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
    FOREQ( i , 2 , MAX_INDEX ){						\
      ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \
    }									\
  }									\

// 二分探索テンプレート
// EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= TARGETの整数解を格納。
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
  static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
  ll ANSWER = MINIMUM;							\
  ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
  ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
  ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
  ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH;				\
  while( VARIABLE_FOR_BINARY_SEARCH_L < VARIABLE_FOR_BINARY_SEARCH_U ){ \
    VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
    CERR( "二分探索中:" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , "-" , TARGET , "=" , VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
    if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \
      VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U;				\
    } else {								\
      VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L;				\
    }									\
    ANSWER = UPDATE_ANSWER;						\
  }									\
  if( VARIABLE_FOR_BINARY_SEARCH_L > VARIABLE_FOR_BINARY_SEARCH_U ){	\
    CERR( "二分探索失敗:" , VARIABLE_FOR_BINARY_SEARCH_L , ">" , VARIABLE_FOR_BINARY_SEARCH_U ); \
    ANSWER = MAXIMUM + 1;						\
  } else {								\
    CERR( "二分探索終了:" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , ( EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) , TARGET ); \
    if( EXPRESSION DESIRED_INEQUALITY TARGET ){				\
      CERR( "二分探索成功:" , #ANSWER , "=" , ANSWER );			\
    } else {								\
      CERR( "二分探索失敗:" , EXPRESSION , "<>"[EXPRESSION > TARGET],  TARGET ); \
      ANSWER = MAXIMUM + 1;						\
    }									\
  }									\

// 単調増加の時にEXPRESSION >= TARGETの最小解を格納。
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \

// 単調増加の時にEXPRESSION <= TARGETの最大解を格納。
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \

// 単調減少の時にEXPRESSION >= TARGETの最大解を格納。
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \

// 単調減少の時にEXPRESSION <= TARGETの最小解を格納。
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \

// t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。
template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。
template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。
template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); }
// tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。
template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); }

// データ構造用
template <typename T> inline T Add( const T& t0 , const T& t1 ) { return t0 + t1; }
template <typename T> inline T XorAdd( const T& t0 , const T& t1 ){ return t0 ^ t1; }
template <typename T> inline T Multiply( const T& t0 , const T& t1 ) { return t0 * t1; }
template <typename T> inline const T& Zero() { static const T z = 0; return z; }
template <typename T> inline const T& One() { static const T o = 1; return o; }\
template <typename T> inline T AddInv( const T& t ) { return -t; }
template <typename T> inline T Id( const T& v ) { return v; }
template <typename T> inline T Min( const T& a , const T& b ){ return a < b ? a : b; }
template <typename T> inline T Max( const T& a , const T& b ){ return a < b ? b : a; }

// グリッド問題用
int H , W , H_minus , W_minus , HW;
vector<vector<bool> > non_wall;
inline T2<int> EnumHW( const int& v ) { return { v / W , v % W }; }
inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; }
const string direction[4] = {"U","R","D","L"};
// (i,j)->(k,h)の方向番号を取得
inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);}
// v->wの方向番号を取得
inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);}
// 方向番号の反転U<->D、R<->L
inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;}
inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v);}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back(v);}}}}
inline void SetEdgeOnGrid( const string& Si , const int& i , list<path> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){const int v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}}
inline void SetWallOnGrid( const string& Si , const int& i , vector<vector<bool> >& non_wall , const char& walkable = '.'  , const char& unwalkable = '#' ){non_wall.push_back(vector<bool>(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}}

// グラフ用関数
template <typename PATH> list<PATH> E( const int& i );
template <typename PATH> vector<list<PATH> > e;

// デバッグ用
#ifdef DEBUG
  inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }
  void AutoCheck( int& exec_mode );
  inline void Solve();
  inline void Experiment();
  inline void SmallTest();
  inline void RandomTest();
  ll GetRand( const ll& Rand_min , const ll& Rand_max );
  int exec_mode;
  CEXPR( int , solve_mode , 0 );
  CEXPR( int , debug_mode , 1 );
  CEXPR( int , library_search_mode , 2 );
  CEXPR( int , experiment_mode , 3 );
  CEXPR( int , small_test_mode , 4 );
  CEXPR( int , random_test_mode , 5 );
#endif

// 圧縮用
#define TE template
#define TY typename
#define US using
#define ST static
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return 
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&

/*

C-x 3 C-x o C-x C-fによるファイル操作用

BIT:
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/compress.txt

BFS:
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt

DFS on Tree:
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/compress.txt

Divisor:
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt

Mod:
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt

Polynomial
c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt

*/

// VVV ライブラリは以下に挿入する。

#define DC_OF_FIRST_SEARCH(BREADTH)TE <int V_max> CL BREADTH ## FirstSearch_Body{PU:int m_V;int m_init;LI<int> m_next;bool m_found[V_max];int m_prev[V_max];IN BREADTH ## FirstSearch_Body(CRI V);IN BREADTH ## FirstSearch_Body(CRI V,CRI init);IN VO Reset(CRI init);IN VO Shift(CRI init);IN CRI SZ()CO;IN CRI init()CO;IN bool& found(CRI i);IN CRI prev(CRI i)CO;int Next();virtual LI<int> e(CRI t)= 0;};TE <int V_max,LI<int> E(CRI)> CL BREADTH ## FirstSearch:PU BREADTH ## FirstSearch_Body<V_max>{PU:TE<TY... Args> IN BREADTH ## FirstSearch(CO Args&... args);IN LI<int> e(CRI t);};TE <int V_max,LI<int> E(CRI)> VO BREADTH ## FirstConnectedComponent(CRI V,int(&vertex)[V_max],int& count);
#define DF_OF_FIRST_SEARCH(BREADTH,PUSH)TE <int V_max> IN BREADTH ## FirstSearch_Body<V_max>::BREADTH ## FirstSearch_Body(CRI V):m_V(V),m_init(),m_next(),m_found(),m_prev(){assert(m_V <= V_max);for(int i = 0;i < m_V;i++){m_prev[i] = -1;}}TE <int V_max> IN BREADTH ## FirstSearch_Body<V_max>::BREADTH ## FirstSearch_Body(CRI V,CRI init):BREADTH ## FirstSearch_Body(V){m_init = init;m_next.push_back(m_init);m_found[m_init] = true;}TE <int V_max,LI<int> E(CRI)> TE <TY... Args> IN BREADTH ## FirstSearch<V_max,E>::BREADTH ## FirstSearch(CO Args&... args):BREADTH ## FirstSearch_Body<V_max>(args...){}TE <int V_max> IN VO BREADTH ## FirstSearch_Body<V_max>::Reset(CRI init){m_init = init;assert(m_init < m_V);m_next.clear();m_next.push_back(m_init);for(int i = 0;i < m_V;i++){m_found[i] = i == m_init;m_prev[i] = -1;}}TE <int V_max> IN VO BREADTH ## FirstSearch_Body<V_max>::Shift(CRI init){m_init = init;assert(m_init < m_V);m_next.clear();if(! m_found[m_init]){m_next.push_back(m_init);m_found[m_init] = true;}}TE <int V_max> IN CRI BREADTH ## FirstSearch_Body<V_max>::SZ()CO{RE m_V;}TE <int V_max> IN CRI BREADTH ## FirstSearch_Body<V_max>::init()CO{RE m_init;}TE <int V_max> IN bool& BREADTH ## FirstSearch_Body<V_max>::found(CRI i){assert(i < m_V);RE m_found[i];}TE <int V_max> IN CRI BREADTH ## FirstSearch_Body<V_max>::prev(CRI i)CO{assert(i < m_V);RE m_prev[i];}TE <int V_max> int BREADTH ## FirstSearch_Body<V_max>::Next(){if(m_next.empty()){RE -1;}CO int i_curr = m_next.front();m_next.pop_front();LI<int> edge = e(i_curr);WH(! edge.empty()){CRI i = edge.front();bool& found_i = m_found[i];if(! found_i){m_next.PUSH(i);m_prev[i] = i_curr;found_i = true;}edge.pop_front();}RE i_curr;}TE <int V_max,LI<int> E(CRI)> IN LI <int> BREADTH ## FirstSearch<V_max,E>::e(CRI t){RE E(t);}TE <int V_max,LI<int> E(CRI)> VO BREADTH ## FirstConnectedComponentSearch(CRI V,int(&vertex)[V_max],int& count){BREADTH ## FirstSearch<V_max,E> bfs{V};count = 0;for(int i = 0;i < V;i++){vertex[i] = -1;}for(int i = 0;i < V;i++){if(vertex[i] == -1){bfs.Shift(i);int j = bfs.Next();WH(j != -1?vertex[j] == 0:false){vertex[j] = count;j = bfs.Next();}count++;}}RE;}
DC_OF_FIRST_SEARCH(Depth);DF_OF_FIRST_SEARCH(Depth,push_front);
TE <int V_max,LI<int> E(CRI),int digit = 0>CL DepthFirstSearchOnTree:PU DepthFirstSearch<V_max,E>{PU:int m_reversed[V_max];VE<VE<int> > m_children;VE<int> m_children_num;bool m_set_children;VE<int> m_depth;bool m_set_depth;VE<int> m_height;bool m_set_height;VE<int> m_weight;bool m_set_weight;VE<int> m_doubling[digit];bool m_set_doubling;IN DepthFirstSearchOnTree(CRI V,CRI root);IN VO Reset(CRI init)= delete;IN VO Shift(CRI init)= delete;IN CRI Root()CO;IN CRI Parent(CRI i)CO;IN CO VE<int>& Children(CRI i);IN CRI Depth(CRI i)CO;IN CRI Height(CRI i);IN CRI Weight(CRI i);IN CRI NodeNumber(CRI i,CO bool& reversed = false)CO;IN CRI ChildrenNumber(CRI i);int Ancestor(int i,int n);int LCA(int i,int j);int LCA(int i,int j,int& i_prev,int& j_prev);TE <TY T,T f(const list<T>&,const int&)>T RootingDP();TE <TY T,T m_T(CO T&,CO T&),CO T& e_T(),T f(CO T&,CRI)> VO RerootingDP(T(&d)[V_max]);VO SetChildren();VO SetDepth();VO SetHeight();VO SetWeight();VO SetDoubling();};
TE <int V_max,LI<int> E(CRI),int digit> IN DepthFirstSearchOnTree<V_max,E,digit>::DepthFirstSearchOnTree(CRI V,CRI root):DepthFirstSearch<V_max,E>(V,root),m_reversed(),m_children(),m_set_children(),m_depth(),m_set_depth(),m_height(),m_set_height(),m_weight(),m_set_weight(),m_doubling(),m_set_doubling(){int n = DepthFirstSearch<V_max,E>::SZ();WH(--n >= 0){m_reversed[n] = DepthFirstSearch<V_max,E>::Next();}}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Root()CO{RE DepthFirstSearch<V_max,E>::init();}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Parent(CRI i)CO{RE DepthFirstSearch<V_max,E>::prev(i);}TE <int V_max,LI<int> E(CRI),int digit> IN CO VE<int>& DepthFirstSearchOnTree<V_max,E,digit>::Children(CRI i){if(! m_set_children){SetChildren();}RE m_children[i];}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Depth(CRI i)CO{if(! m_set_depth){SetDepth();}RE m_depth[i];}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Height(CRI i){if(! m_set_height){SetHeight();}RE m_height[i];}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Weight(CRI i){if(! m_set_weight){SetWeight();}RE m_weight[i];}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::NodeNumber(CRI i,CO bool& reversed)CO{RE m_reversed[reversed?i:DepthFirstSearch<V_max,E>::SZ()- 1 - i];}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::ChildrenNumber(CRI i){if(! m_set_children){SetChildren();}RE m_children_num[i];}TE <int V_max,LI<int> E(CRI),int digit>int DepthFirstSearchOnTree<V_max,E,digit>::Ancestor(int i,int n){if(! m_set_doubling){SetDoubling();}assert((n >> digit)== 0);int d = 0;WH(n != 0){if((n & 1)== 1){assert((i = m_doubling[d][i])!= -1);}d++;n >>= 1;}RE i;}TE <int V_max,LI<int> E(CRI),int digit>int DepthFirstSearchOnTree<V_max,E,digit>::LCA(int i,int j){int diff = Depth(i)- Depth(j);if(diff < 0){swap(i,j);diff *= -1;}i = Ancestor(i,diff);if(i == j){RE i;}int d = digit;WH(--d >= 0){CO int(&doubling_d)[V_max] = m_doubling[d];CRI doubling_d_i = doubling_d[i];CRI doubling_d_j = doubling_d[j];if(doubling_d_i != doubling_d_j){i = doubling_d_i;j = doubling_d_j;assert(i != -1);assert(j != -1);}}RE Parent(i);}TE <int V_max,LI<int> E(CRI),int digit>int DepthFirstSearchOnTree<V_max,E,digit>::LCA(int i,int j,int& i_prev,int& j_prev){if(i == j){i_prev = j_prev = -1;RE i;}int diff = Depth(i)- Depth(j);if(diff < 0){RE LCA(j,i,j_prev,i_prev);}if(diff > 0){i_prev = Ancestor(i,diff - 1);i = Parent(i_prev);assert(i != -1);if(i == j){j_prev = -1;RE i;}}else if(! m_set_doubling){SetDoubling();}int d = digit;WH(--d >= 0){CO int(&doubling_d)[V_max] = m_doubling[d];CRI doubling_d_i = doubling_d[i];CRI doubling_d_j = doubling_d[j];if(doubling_d_i != doubling_d_j){i = doubling_d_i;j = doubling_d_j;assert(i != -1);assert(j != -1);}}i_prev = i;j_prev = j;RE Parent(i_prev);}TE <int V_max,LI<int> E(CRI),int digit>VO DepthFirstSearchOnTree<V_max,E,digit>::SetChildren(){assert(!m_set_children);m_set_children = true;CRI V = DepthFirstSearch<V_max,E>::SZ();m_children.resize(V);m_children_num.resize(V);for(int i = 0;i < V;i++){CRI j = Parent(i);if(j == -1){m_children_num[i] = -1;}else{VE<int>& m_children_j = m_children[j];m_children_num[i] = m_children_j.SZ();m_children_j.push_back(i);}}RE;}TE <int V_max,LI<int> E(CRI),int digit>VO DepthFirstSearchOnTree<V_max,E,digit>::SetDepth(){assert(!m_set_depth);m_set_depth = true;CRI V = DepthFirstSearch<V_max,E>::SZ();m_depth.resize(V);for(int i = 0;i < V;i++){CRI parent_i = Parent(i);if(parent_i != -1){m_depth[i] = m_depth[parent_i] + 1;}}RE;}TE <int V_max,LI<int> E(CRI),int digit>VO DepthFirstSearchOnTree<V_max,E,digit>::SetHeight(){assert(!m_set_height);m_set_height = true;CRI V = DepthFirstSearch<V_max,E>::SZ();m_height.resize(V);for(int i = 0;i < V;i++){CRI reversed_i = m_reversed[i];CRI parent_i = Parent(reversed_i);if(parent_i != -1){int& height_parent_i = m_height[parent_i];CRI height_i = m_height[reversed_i];height_parent_i > height_i?height_parent_i:height_parent_i = height_i + 1;}}RE;}TE <int V_max,LI<int> E(CRI),int digit>VO DepthFirstSearchOnTree<V_max,E,digit>::SetWeight(){assert(!m_set_weight);m_set_weight = true;CRI V = DepthFirstSearch<V_max,E>::SZ();m_weight.resize(V);for(int i = 0;i < V;i++){CRI reversed_i = m_reversed[i];CRI parent_i = Parent(reversed_i);if(parent_i != -1){m_weight[parent_i] += m_weight[reversed_i] + 1;}}RE;}TE <int V_max,LI<int> E(CRI),int digit>VO DepthFirstSearchOnTree<V_max,E,digit>::SetDoubling(){assert(!m_set_doubling);m_set_doubling = true;CRI V = DepthFirstSearch<V_max,E>::SZ();{VE<int>& doubling_0 = m_doubling[0];doubling_0.reserve(V);CRI r = Root();for(int i = 0;i < V;i++ ){doubling_0.push_back(Parent(i));}}for(int d = 1;d < digit;d++ ){VE<int>& doubling_d = m_doubling[d];VE<int>& doubling_d_minus = m_doubling[d-1];doubling_d.reserve(V);for(int i = 0;i < V;i++){CRI doubling_d_minus_i = doubling_d_minus[i];doubling_d.push_back(doubling_d_minus_i == -1?-1:doubling_d_minus[doubling_d_minus_i]);}}}TE <int V_max,LI<int> E(CRI),int digit> TE <TY T,T f(const list<T>&,const int&)>T DepthFirstSearchOnTree<V_max,E,digit>::RootingDP(){if(! m_set_children){SetChildren();}CRI V = DepthFirstSearch<V_max,E>::SZ();LI<T> children_value[V_max] = {};T temp;for(int n = 0;n < V;n++){CRI i = NodeNumber(n,true);CRI j = Parent(i);temp = f(children_value[i],i);if(j != -1){children_value[j].push_back(temp);}}RE temp;}TE <int V_max,LI<int> E(CRI),int digit> TE <TY T,T m_T(CO T&,CO T&),CO T& e_T(),T f(CO T&,CRI)>VO DepthFirstSearchOnTree<V_max,E,digit>::RerootingDP(T(&d)[V_max]){if(! m_set_children){SetChildren();}CRI V = DepthFirstSearch<V_max,E>::SZ();CO T& e = e_T();VE<T> children_value[V_max] ={};VE<T> left_sum[V_max] ={};VE<T> right_sum[V_max] ={};for(int i = 0;i < V;i++){children_value[i].resize(m_children[i].SZ());}for(int n = 0;n < V;n++){CRI i = NodeNumber(n,true);CO VE<T>& children_value_i = children_value[i];CO int SZ_i = children_value_i.SZ();T temp = e;VE<T>& left_sum_i = left_sum[i];left_sum_i.reserve(SZ_i + 1);left_sum_i.push_back(temp);for(int m = 0;m < SZ_i;m++){left_sum_i.push_back(temp = m_T(temp,children_value_i[m]));}CRI j = Parent(i);if(j != -1){children_value[j][m_children_num[i]] = f(temp,i);}temp = e;VE<T>& right_sum_i = right_sum[i];right_sum_i.resize(SZ_i);for(int m = 1;m <= SZ_i;m++){right_sum_i[ SZ_i - m ] = temp;temp = m_T(children_value_i[SZ_i - m],temp);}}for(int n = 1;n < V;n++){CRI i = NodeNumber(n);CRI j = Parent(i);CRI k = ChildrenNumber(i);VE<T>& left_sum_i = left_sum[i];VE<T>& right_sum_i = right_sum[i];CO int SZ_i = right_sum_i.SZ();CO T rest_i = f(m_T(left_sum[j][k],right_sum[j][k]),j);for(int m = 0;m <= SZ_i;m++){T& left_sum_im = left_sum_i[m];left_sum_im = m_T(rest_i,left_sum_im);}}for(int i = 0;i < V;i++){d[i] = f(left_sum[i].back(),i);}RE;}













// AAA ライブラリは以上に挿入する。

// VVV テンプレート引数用の関数は以下に挿入する。

// H,W,e<PATH>は宣言済み。
template <typename PATH> list<PATH> E( const int& i )
{
  // list<PATH> answer{};
  list<PATH> answer = e<PATH>[i];
  // VVV 入力によらない処理は以下に挿入する。

  // AAA 入力によらない処理は以上に挿入する。
  return answer;
}













// AAA テンプレート引数用の関数は以上に挿入する。

ll Naive( int N , int M , int K )
{
  ll answer = N + M + K;
  return answer;
}

ll Answer( ll N , ll M , ll K )
{
  // START_WATCH;
  ll answer = N + M + K;

  // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。
  // CEXPR( double , TL , 2000.0 );
  // while( CHECK_WATCH( TL ) ){

  // }

  return answer;
}

inline void Solve()
{
  // // 大きな素数
  // CEXPR( ll , P , 998244353 );
  // // CEXPR( ll , P , 1000000007 ); // Mod<P>を使う時はP2に変更。

  // // データ構造使用畤のNの上限
  DEXPR( int , bound_N , 200000 , 100 ); // 0が5個
  // // DEXPR( int , bound_N , 1000000000 , 100 ); // 0が9個
  // // DEXPR( ll , bound_N , 1000000000000000000 , 100 ); // 0が18個

  // // データ構造使用畤のMの上限
  // // CEXPR( TYPE_OF( bound_N ) , bound_M , bound_N );
  // DEXPR( int , bound_M , 100000 , 100 ); // 0が5個
  // // DEXPR( int , bound_M , 1000000000 , 100 ); // 0が9個
  // // DEXPR( ll , bound_M , 1000000000000000000 , 100 ); // 0が18個

  // // 数
  CIN( ll , N );
  // CIN( ll , M );
  // CIN( ll , N , M , K );
  // // CIN_ASSERT( N , 1 , bound_N ); // ランダムテスト用。上限のデフォルト値は10^5。
  // // CIN_ASSERT( M , 1 , bound_M ); // ランダムテスト用。上限のデフォルト値は10^5。

  // // 文字列
  // CIN( string , S );
  // CIN( string , T );

  // // 配列
  // CIN_A( ll , A , N );
  // // CIN_A( ll , B , N );
  // // vector<ll> A( N );
  // // vector<ll> B( N );
  // // ll A[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5。
  // // ll B[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5。
  // // FOR( i , 0 , N ){
  // //   cin >> A[i] >> B[i];
  // // }

  // // 順列
  // vector<int> P( N );
  // vector<int> P_inv( N );
  // FOR( i , 0 , N ){
  //   cin >> P[i];
  //   P_inv[--P[i]] = i;
  // }
  
  // グラフ
  e<int>.resize( N );
  // e<path>.resize( N );
  ll M = N - 1;
  FOR( j , 0 , M ){
    CIN_ASSERT( uj , 1 , N );
    CIN_ASSERT( vj , 1 , N );
    uj--;
    vj--;
    e<int>[uj].push_back( vj );
    e<int>[vj].push_back( uj );
    // CIN( ll , wj );
    // e<path>[uj].push_back( { vj , wj } );
    // e<path>[vj].push_back( { uj , wj } );
  }

  // // 座標圧縮や単一クエリタイプなどのための入力格納
  // vector<T3<ll> > data( M );
  // FOR( j , 0 , M ){
  //   CIN( ll , x , y , z );
  //   data[j] = { x , y , z };
  // }

  // // 一般のクエリ
  // CIN( int , Q );
  // // DEXPR( int , bound_Q , 100000 , 100 ); // 基本不要。
  // // CIN_ASSERT( Q , 1 , bound_Q ); // 基本不要。
  // // vector<T3<int> > query( Q );
  // // vector<T2<int> > query( Q );
  // FOR( q , 0 , Q ){
  //   CIN( int , type );
  //   if( type == 1 ){
  //     CIN( int , x , y );
  //     // query[q] = { type , x , y };
  //   } else if( type == 2 ){
  //     CIN( int , x , y );
  //     // query[q] = { type , x , y };
  //   } else {
  //     CIN( int , x , y );
  //     // query[q] = { type , x , y };
  //   }
  //   // CIN( int , x , y );
  //   // // query[q] = { x , y };
  // }
  // // sort( query , query + Q );
  // // FOR( q , 0 , Q ){
  // //   auto& [x,y] = query[q];
  // //   // auto& [type,x,y] = query[q];
  // // }
  
  // // データ構造や壁配列使用畤のH,Wの上限
  // DEXPR( int , bound_H , 2000 , 30 );
  // // DEXPR( int , bound_H , 100000 , 10 ); // 0が5個
  // // CEXPR( int , bound_H , 1000000000 ); // 0が9個
  // CEXPR( int , bound_W , bound_H );
  // static_assert( ll( bound_H ) * bound_W < ll( 1 ) << 31 );
  // CEXPR( int , bound_HW , bound_H * bound_W );
  // // CEXPR( int , bound_HW , 100000 ); // 0が5個
  // // CEXPR( int , bound_HW , 1000000 ); // 0が6個

  // // グリッド
  // cin >> H >> W;
  // // SET_ASSERT( H , 1 , bound_H ); // ランダムテスト用。上限のデフォルト値は2*10^3。
  // // SET_ASSERT( W , 1 , bound_W ); // ランダムテスト用。上限のデフォルト値は2*10^3。
  // H_minus = H - 1;
  // W_minus = W - 1;
  // HW = H * W;
  // // assert( HW <= bound_HW ); // 基本不要。上限のデフォルト値は4*10^6。
  // vector<string> S( H );
  // FOR( i , 0 , H ){
  //   cin >> S[i];
  //   // SetEdgeOnGrid( S[i] , i , e<int> );
  //   // SetWallOnGrid( S[i] , i , non_wall );
  // }
  // // {h,w}へデコード: EnumHW( v )
  // // {h,w}をコード: EnumHW_inv( h , w );
  // // (i,j)->(k,h)の方向番号を取得: DirectionNumberOnGrid( i , j , k , h );
  // // v->wの方向番号を取得: DirectionNumberOnGrid( v , w );
  // // 方向番号の反転U<->D、R<->L: ReverseDirectionNumberOnGrid( n );

  DepthFirstSearchOnTree<bound_N,E<int>> dfst{ N , 0 };
  int mw[N]{};
  int Mw[N]{};
  FOREQINV( i , M , 0 ){
    auto& n = dfst.NodeNumber( i );
    CERR( n + 1 , Mw[n] , mw[n] );
    auto& p = dfst.Parent( n );
    if( p != -1 ){
      mw[p] = mw[p] == 0 ? Mw[n] + 1 : min( mw[p] , Mw[n] + 1 );
      Mw[p] = max( Mw[p] , mw[n] + 1 );
    }
  }
  COUT( Mw[0] );
  COUT( mw[0] );
  // auto answer = Answer( N , M , K );
  // RETURN( answer );
  // // COUT( answer );
  // // COUT_A( A , N );
}

inline void Experiment()
{
  // CEXPR( int , bound , 10 );
  // FOREQ( N , 0 , bound ){
  //   FOREQ( M , 0 , bound ){
  //     FOREQ( K , 0 , bound ){
  //   	COUT( N , M , K , ":" , Naive( N , M , K ) );
  //     }
  //   }
  //   // cout << Naive( N ) << ",\n"[N==bound];
  // }
}

inline void SmallTest()
{
  // CEXPR( int , bound , 10 );
  // FOREQ( N , 0 , bound ){
  //   FOREQ( M , 0 , bound ){
  //     FOREQ( K , 0 , bound ){
  //   	COMPARE( N , M , K );
  //     }
  //   }
  //   // COMPARE( N );
  // }
}

REPEAT_MAIN(1);
0