結果
| 問題 |
No.1241 Eternal Tours
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2023-11-18 18:47:08 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,878 bytes |
| コンパイル時間 | 1,040 ms |
| コンパイル使用メモリ | 13,440 KB |
| 実行使用メモリ | 108,288 KB |
| 最終ジャッジ日時 | 2024-09-26 05:53:37 |
| 合計ジャッジ時間 | 9,061 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 TLE * 1 -- * 1 |
| other | -- * 40 |
ソースコード
import sys
readline=sys.stdin.readline
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=None):
self.p=p
self.e=e
if self.e==None:
self.mod=self.p
else:
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
#assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
if self.e==None:
for i in range(1,N+1):
self.factorial.append(self.factorial[-1]*i%self.mod)
else:
self.cnt=[0]*(N+1)
for i in range(1,N+1):
self.cnt[i]=self.cnt[i-1]
ii=i
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append(self.factorial[-1]*ii%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Build_Inverse(self,N):
self.inverse=[None]*(N+1)
assert self.p>N
self.inverse[1]=1
for n in range(2,N+1):
if n%self.p==0:
continue
a,b=divmod(self.mod,n)
self.inverse[n]=(-a*self.inverse[b])%self.mod
def Inverse(self,n):
return self.inverse[n]
def Fact(self,N):
if N<0:
return 0
retu=self.factorial[N]
if self.e!=None and self.cnt[N]:
retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
retu%=self.mod
return retu
def Fact_Inve(self,N):
if self.e!=None and self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
if self.e!=None:
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
def Primitive_Root(p):
if p==2:
return 1
if p==167772161:
return 3
if p==469762049:
return 3
if p==754974721:
return 11
if p==998244353:
return 3
if p==10**9+7:
return 5
divisors=[2]
pp=(p-1)//2
while pp%2==0:
pp//=2
for d in range(3,pp+1,2):
if d**2>pp:
break
if pp%d==0:
divisors.append(d)
while pp%d==0:
pp//=d
if pp>1:
divisors.append(pp)
primitive_root=2
while True:
for d in divisors:
if pow(primitive_root,(p-1)//d,p)==1:
break
else:
return primitive_root
primitive_root+=1
def NTT(polynomial,T):
if mod==998244353:
prim_root=3
prim_root_inve=332748118
else:
prim_root=Primitive_Root(mod)
prim_root_inve=MOD(mod).Pow(prim_root,-1)
def DFT(polynomial,n,inverse=False):
if inverse:
for bit in range(1,n+1):
a=1<<bit-1
U=[1]
x=pow(prim_root,mod-1>>bit,mod)
for _ in range(a):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t]*U[j])%mod,(polynomial[s]-polynomial[t]*U[j])%mod
x=pow((mod+1)//2,n,mod)
for i in range(1<<n):
polynomial[i]*=x
polynomial[i]%=mod
else:
for bit in range(n,0,-1):
a=1<<bit-1
U=[1]
x=pow(prim_root_inve,mod-1>>bit,mod)
for _ in range(a-1):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t])%mod,U[j]*(polynomial[s]-polynomial[t])%mod
n0=X+1
n1=Y+1
polynomial=[polynomial[i]+[0]*((1<<n1)-len(polynomial[0])) for i in range(len(polynomial))]+[[0]*(1<<n1) for i in range((1<<n0)-len(polynomial))]
for i in range(1<<n0):
DFT(polynomial[i],n1)
polynomial=[[polynomial[i][j] for i in range(1<<n0)] for j in range(1<<n1)]
for j in range(1<<n1):
DFT(polynomial[j],n0)
ntt=[[pow(polynomial[j][i],T,mod) for i in range(1<<n0)] for j in range(1<<n1)]
for j in range(1<<n1):
DFT(ntt[j],n0,inverse=True)
ntt=[[ntt[j][i] for j in range(1<<n1)] for i in range(1<<n0)]
for i in range(1<<n0):
DFT(ntt[i],n1,inverse=True)
return ntt
mod=998244353
X,Y,T,a,b,c,d=map(int,readline().split())
a-=1;b-=1;c-=1;d-=1
poly=[[0]*(1<<Y+1) for x in range(1<<X+1)]
for x in (1,0,-1):
for y in (1,0,-1):
if 0 in (x,y):
poly[x][y]=1
poly=NTT(poly,T)
ans=(poly[(a-c)%(1<<X+1)][(b-d)%(1<<Y+1)]+poly[(a+c+2)%(1<<X+1)][(b+d+2)%(1<<Y+1)]-poly[(a+c+2)%(1<<X+1)][(b-d)%(1<<Y+1)]-poly[(a-c)%(1<<X+1)][(b+d+2)%(1<<Y+1)])%mod
print(ans)
vwxyz