結果
問題 | No.1241 Eternal Tours |
ユーザー | vwxyz |
提出日時 | 2023-11-18 18:47:17 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 3,256 ms / 6,000 ms |
コード長 | 5,878 bytes |
コンパイル時間 | 2,144 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 186,324 KB |
最終ジャッジ日時 | 2024-09-26 05:54:24 |
合計ジャッジ時間 | 45,137 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 44 ms
53,760 KB |
testcase_01 | AC | 46 ms
54,016 KB |
testcase_02 | AC | 697 ms
117,852 KB |
testcase_03 | AC | 94 ms
76,160 KB |
testcase_04 | AC | 65 ms
65,024 KB |
testcase_05 | AC | 49 ms
54,172 KB |
testcase_06 | AC | 48 ms
53,760 KB |
testcase_07 | AC | 51 ms
55,168 KB |
testcase_08 | AC | 77 ms
70,016 KB |
testcase_09 | AC | 65 ms
65,444 KB |
testcase_10 | AC | 78 ms
70,016 KB |
testcase_11 | AC | 75 ms
69,504 KB |
testcase_12 | AC | 48 ms
54,784 KB |
testcase_13 | AC | 64 ms
64,896 KB |
testcase_14 | AC | 1,154 ms
100,440 KB |
testcase_15 | AC | 48 ms
54,144 KB |
testcase_16 | AC | 381 ms
82,840 KB |
testcase_17 | AC | 2,922 ms
186,324 KB |
testcase_18 | AC | 2,306 ms
130,048 KB |
testcase_19 | AC | 2,361 ms
134,820 KB |
testcase_20 | AC | 110 ms
76,416 KB |
testcase_21 | AC | 164 ms
77,900 KB |
testcase_22 | AC | 2,618 ms
159,508 KB |
testcase_23 | AC | 173 ms
77,568 KB |
testcase_24 | AC | 44 ms
53,760 KB |
testcase_25 | AC | 76 ms
69,632 KB |
testcase_26 | AC | 45 ms
53,504 KB |
testcase_27 | AC | 45 ms
53,504 KB |
testcase_28 | AC | 1,190 ms
117,692 KB |
testcase_29 | AC | 1,206 ms
117,892 KB |
testcase_30 | AC | 1,452 ms
117,648 KB |
testcase_31 | AC | 987 ms
97,920 KB |
testcase_32 | AC | 2,952 ms
186,208 KB |
testcase_33 | AC | 2,848 ms
173,012 KB |
testcase_34 | AC | 1,988 ms
117,632 KB |
testcase_35 | AC | 1,940 ms
117,632 KB |
testcase_36 | AC | 49 ms
53,632 KB |
testcase_37 | AC | 72 ms
66,304 KB |
testcase_38 | AC | 3,256 ms
172,756 KB |
testcase_39 | AC | 2,858 ms
149,216 KB |
testcase_40 | AC | 2,383 ms
117,732 KB |
testcase_41 | AC | 2,451 ms
186,196 KB |
testcase_42 | AC | 2,040 ms
148,960 KB |
testcase_43 | AC | 1,508 ms
117,876 KB |
ソースコード
import sys readline=sys.stdin.readline def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=None): self.p=p self.e=e if self.e==None: self.mod=self.p else: self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: #assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] if self.e==None: for i in range(1,N+1): self.factorial.append(self.factorial[-1]*i%self.mod) else: self.cnt=[0]*(N+1) for i in range(1,N+1): self.cnt[i]=self.cnt[i-1] ii=i while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append(self.factorial[-1]*ii%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Build_Inverse(self,N): self.inverse=[None]*(N+1) assert self.p>N self.inverse[1]=1 for n in range(2,N+1): if n%self.p==0: continue a,b=divmod(self.mod,n) self.inverse[n]=(-a*self.inverse[b])%self.mod def Inverse(self,n): return self.inverse[n] def Fact(self,N): if N<0: return 0 retu=self.factorial[N] if self.e!=None and self.cnt[N]: retu*=pow(self.p,self.cnt[N],self.mod)%self.mod retu%=self.mod return retu def Fact_Inve(self,N): if self.e!=None and self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod if self.e!=None: cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu def Primitive_Root(p): if p==2: return 1 if p==167772161: return 3 if p==469762049: return 3 if p==754974721: return 11 if p==998244353: return 3 if p==10**9+7: return 5 divisors=[2] pp=(p-1)//2 while pp%2==0: pp//=2 for d in range(3,pp+1,2): if d**2>pp: break if pp%d==0: divisors.append(d) while pp%d==0: pp//=d if pp>1: divisors.append(pp) primitive_root=2 while True: for d in divisors: if pow(primitive_root,(p-1)//d,p)==1: break else: return primitive_root primitive_root+=1 def NTT(polynomial,T): if mod==998244353: prim_root=3 prim_root_inve=332748118 else: prim_root=Primitive_Root(mod) prim_root_inve=MOD(mod).Pow(prim_root,-1) def DFT(polynomial,n,inverse=False): if inverse: for bit in range(1,n+1): a=1<<bit-1 U=[1] x=pow(prim_root,mod-1>>bit,mod) for _ in range(a): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t]*U[j])%mod,(polynomial[s]-polynomial[t]*U[j])%mod x=pow((mod+1)//2,n,mod) for i in range(1<<n): polynomial[i]*=x polynomial[i]%=mod else: for bit in range(n,0,-1): a=1<<bit-1 U=[1] x=pow(prim_root_inve,mod-1>>bit,mod) for _ in range(a-1): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t])%mod,U[j]*(polynomial[s]-polynomial[t])%mod n0=X+1 n1=Y+1 polynomial=[polynomial[i]+[0]*((1<<n1)-len(polynomial[0])) for i in range(len(polynomial))]+[[0]*(1<<n1) for i in range((1<<n0)-len(polynomial))] for i in range(1<<n0): DFT(polynomial[i],n1) polynomial=[[polynomial[i][j] for i in range(1<<n0)] for j in range(1<<n1)] for j in range(1<<n1): DFT(polynomial[j],n0) ntt=[[pow(polynomial[j][i],T,mod) for i in range(1<<n0)] for j in range(1<<n1)] for j in range(1<<n1): DFT(ntt[j],n0,inverse=True) ntt=[[ntt[j][i] for j in range(1<<n1)] for i in range(1<<n0)] for i in range(1<<n0): DFT(ntt[i],n1,inverse=True) return ntt mod=998244353 X,Y,T,a,b,c,d=map(int,readline().split()) a-=1;b-=1;c-=1;d-=1 poly=[[0]*(1<<Y+1) for x in range(1<<X+1)] for x in (1,0,-1): for y in (1,0,-1): if 0 in (x,y): poly[x][y]=1 poly=NTT(poly,T) ans=(poly[(a-c)%(1<<X+1)][(b-d)%(1<<Y+1)]+poly[(a+c+2)%(1<<X+1)][(b+d+2)%(1<<Y+1)]-poly[(a+c+2)%(1<<X+1)][(b-d)%(1<<Y+1)]-poly[(a-c)%(1<<X+1)][(b+d+2)%(1<<Y+1)])%mod print(ans)