結果

問題 No.1388 Less than K
ユーザー vwxyzvwxyz
提出日時 2023-11-19 01:45:26
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 4,460 bytes
コンパイル時間 402 ms
コンパイル使用メモリ 82,424 KB
実行使用メモリ 136,380 KB
最終ジャッジ日時 2024-09-26 06:03:25
合計ジャッジ時間 17,998 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 123 ms
96,732 KB
testcase_01 AC 123 ms
89,568 KB
testcase_02 AC 145 ms
90,536 KB
testcase_03 AC 127 ms
89,432 KB
testcase_04 AC 134 ms
90,160 KB
testcase_05 AC 157 ms
90,500 KB
testcase_06 AC 151 ms
90,512 KB
testcase_07 AC 126 ms
89,764 KB
testcase_08 AC 176 ms
91,984 KB
testcase_09 AC 150 ms
90,604 KB
testcase_10 AC 143 ms
90,600 KB
testcase_11 AC 153 ms
90,736 KB
testcase_12 AC 174 ms
92,352 KB
testcase_13 AC 201 ms
93,368 KB
testcase_14 AC 236 ms
94,368 KB
testcase_15 AC 369 ms
97,924 KB
testcase_16 AC 462 ms
100,996 KB
testcase_17 AC 628 ms
104,120 KB
testcase_18 AC 981 ms
111,852 KB
testcase_19 AC 1,359 ms
117,768 KB
testcase_20 AC 1,459 ms
118,160 KB
testcase_21 AC 224 ms
117,728 KB
testcase_22 AC 179 ms
112,108 KB
testcase_23 AC 171 ms
99,404 KB
testcase_24 AC 196 ms
105,460 KB
testcase_25 AC 210 ms
107,800 KB
testcase_26 AC 194 ms
109,848 KB
testcase_27 AC 174 ms
104,116 KB
testcase_28 AC 164 ms
105,180 KB
testcase_29 AC 163 ms
105,048 KB
testcase_30 AC 141 ms
90,428 KB
testcase_31 AC 145 ms
93,736 KB
testcase_32 AC 127 ms
89,868 KB
testcase_33 AC 178 ms
115,228 KB
testcase_34 AC 180 ms
114,868 KB
testcase_35 AC 179 ms
112,056 KB
testcase_36 AC 211 ms
115,332 KB
testcase_37 AC 192 ms
118,520 KB
testcase_38 AC 260 ms
118,336 KB
testcase_39 AC 211 ms
114,904 KB
testcase_40 AC 239 ms
112,236 KB
testcase_41 AC 354 ms
128,900 KB
testcase_42 AC 213 ms
118,352 KB
testcase_43 TLE -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
testcase_48 -- -
testcase_49 -- -
testcase_50 -- -
testcase_51 -- -
testcase_52 -- -
testcase_53 -- -
testcase_54 -- -
testcase_55 -- -
testcase_56 -- -
testcase_57 -- -
testcase_58 -- -
testcase_59 -- -
testcase_60 -- -
testcase_61 -- -
testcase_62 -- -
testcase_63 -- -
testcase_64 -- -
testcase_65 -- -
testcase_66 -- -
testcase_67 -- -
testcase_68 -- -
testcase_69 -- -
testcase_70 -- -
testcase_71 -- -
testcase_72 -- -
testcase_73 -- -
testcase_74 -- -
testcase_75 -- -
testcase_76 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
import time
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
write=sys.stdout.write
#import pypyjit
#pypyjit.set_param('max_unroll_recursion=-1')
#sys.set_int_max_str_digits(10**9)

def Extended_Euclid(n,m):
    stack=[]
    while m:
        stack.append((n,m))
        n,m=m,n%m
    if n>=0:
        x,y=1,0
    else:
        x,y=-1,0
    for i in range(len(stack)-1,-1,-1):
        n,m=stack[i]
        x,y=y,x-(n//m)*y
    return x,y

class MOD:
    def __init__(self,p,e=None):
        self.p=p
        self.e=e
        if self.e==None:
            self.mod=self.p
        else:
            self.mod=self.p**self.e

    def Pow(self,a,n):
        a%=self.mod
        if n>=0:
            return pow(a,n,self.mod)
        else:
            #assert math.gcd(a,self.mod)==1
            x=Extended_Euclid(a,self.mod)[0]
            return pow(x,-n,self.mod)

    def Build_Fact(self,N):
        assert N>=0
        self.factorial=[1]
        if self.e==None:
            for i in range(1,N+1):
                self.factorial.append(self.factorial[-1]*i%self.mod)
        else:
            self.cnt=[0]*(N+1)
            for i in range(1,N+1):
                self.cnt[i]=self.cnt[i-1]
                ii=i
                while ii%self.p==0:
                    ii//=self.p
                    self.cnt[i]+=1
                self.factorial.append(self.factorial[-1]*ii%self.mod)
        self.factorial_inve=[None]*(N+1)
        self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
        for i in range(N-1,-1,-1):
            ii=i+1
            while ii%self.p==0:
                ii//=self.p
            self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod

    def Build_Inverse(self,N):
        self.inverse=[None]*(N+1)
        assert self.p>N
        self.inverse[1]=1
        for n in range(2,N+1):
            if n%self.p==0:
                continue
            a,b=divmod(self.mod,n)
            self.inverse[n]=(-a*self.inverse[b])%self.mod
    
    def Inverse(self,n):
        return self.inverse[n]

    def Fact(self,N):
        if N<0:
            return 0
        retu=self.factorial[N]
        if self.e!=None and self.cnt[N]:
            retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
            retu%=self.mod
        return retu

    def Fact_Inve(self,N):
        if self.e!=None and self.cnt[N]:
            return None
        return self.factorial_inve[N]

    def Comb(self,N,K,divisible_count=False):
        if K<0 or K>N:
            return 0
        retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
        if self.e!=None:
            cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
            if divisible_count:
                return retu,cnt
            else:
                retu*=pow(self.p,cnt,self.mod)
                retu%=self.mod
        return retu

H,W,K=map(int,readline().split())
H-=1;W-=1
K//=2
mod=998244353
MD=MOD(mod)
MD.Build_Fact(H+W)
N=min(H,W)
ans=0
if K<=700:
    for h in range(N+1):
        if h:
            prev=dp
            dp=[0]*(2*K+1)
        else:
            dp=[0]*(2*K+1)
            dp[K]=1
        for w in range(max(h-K,0),min(h+K,N)+1):
            if h and abs((h-1)-w)<=K:
                dp[w-h+K]+=prev[w-(h-1)+K]
            if w and abs(h-(w-1))<=K:
                dp[w-h+K]+=dp[(w-1)-h+K]
            dp[w-h+K]%=mod
        ans+=MD.Fact(H+W)*MD.Fact_Inve(H-h)%mod*MD.Fact_Inve(W-h)%mod*MD.Fact_Inve(2*h)%mod*dp[K]%mod
        ans%=mod
else:
    for cnt in range(N+1):
        s=MD.Comb(2*cnt,cnt)
        for i in range(1,cnt//(K+1)+1):
            if i%2:
                s-=2*MD.Comb(2*cnt,cnt-(K+1)*i)
            else:
                s+=2*MD.Comb(2*cnt,cnt-(K+1)*i)
            s%=mod
        ans+=MD.Fact(H+W)*MD.Fact_Inve(H-cnt)%mod*MD.Fact_Inve(W-cnt)%mod*MD.Fact_Inve(2*cnt)%mod*s%mod
        ans%=mod
print(ans)
0