結果
問題 | No.1388 Less than K |
ユーザー | vwxyz |
提出日時 | 2023-11-19 01:45:41 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 2,936 ms / 3,000 ms |
コード長 | 4,460 bytes |
コンパイル時間 | 397 ms |
コンパイル使用メモリ | 82,160 KB |
実行使用メモリ | 130,108 KB |
最終ジャッジ日時 | 2024-09-26 06:04:32 |
合計ジャッジ時間 | 54,613 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 123 ms
89,560 KB |
testcase_01 | AC | 123 ms
89,460 KB |
testcase_02 | AC | 129 ms
89,928 KB |
testcase_03 | AC | 125 ms
89,460 KB |
testcase_04 | AC | 134 ms
90,132 KB |
testcase_05 | AC | 158 ms
90,504 KB |
testcase_06 | AC | 151 ms
90,516 KB |
testcase_07 | AC | 126 ms
89,936 KB |
testcase_08 | AC | 181 ms
91,920 KB |
testcase_09 | AC | 148 ms
90,576 KB |
testcase_10 | AC | 146 ms
90,524 KB |
testcase_11 | AC | 152 ms
90,604 KB |
testcase_12 | AC | 184 ms
92,312 KB |
testcase_13 | AC | 202 ms
93,488 KB |
testcase_14 | AC | 236 ms
94,520 KB |
testcase_15 | AC | 378 ms
98,016 KB |
testcase_16 | AC | 467 ms
100,972 KB |
testcase_17 | AC | 638 ms
104,152 KB |
testcase_18 | AC | 977 ms
111,756 KB |
testcase_19 | AC | 1,379 ms
117,960 KB |
testcase_20 | AC | 1,477 ms
118,176 KB |
testcase_21 | AC | 226 ms
117,864 KB |
testcase_22 | AC | 180 ms
112,088 KB |
testcase_23 | AC | 169 ms
99,660 KB |
testcase_24 | AC | 191 ms
105,432 KB |
testcase_25 | AC | 202 ms
108,032 KB |
testcase_26 | AC | 196 ms
109,864 KB |
testcase_27 | AC | 183 ms
103,816 KB |
testcase_28 | AC | 170 ms
104,988 KB |
testcase_29 | AC | 164 ms
105,004 KB |
testcase_30 | AC | 145 ms
90,412 KB |
testcase_31 | AC | 152 ms
94,068 KB |
testcase_32 | AC | 130 ms
89,608 KB |
testcase_33 | AC | 175 ms
115,184 KB |
testcase_34 | AC | 176 ms
114,656 KB |
testcase_35 | AC | 174 ms
112,156 KB |
testcase_36 | AC | 217 ms
115,100 KB |
testcase_37 | AC | 193 ms
118,260 KB |
testcase_38 | AC | 270 ms
118,336 KB |
testcase_39 | AC | 211 ms
114,968 KB |
testcase_40 | AC | 238 ms
112,208 KB |
testcase_41 | AC | 358 ms
129,120 KB |
testcase_42 | AC | 212 ms
118,360 KB |
testcase_43 | AC | 1,243 ms
129,176 KB |
testcase_44 | AC | 2,134 ms
128,356 KB |
testcase_45 | AC | 1,602 ms
129,024 KB |
testcase_46 | AC | 2,071 ms
129,488 KB |
testcase_47 | AC | 2,765 ms
125,204 KB |
testcase_48 | AC | 2,381 ms
129,152 KB |
testcase_49 | AC | 2,936 ms
128,672 KB |
testcase_50 | AC | 2,760 ms
128,544 KB |
testcase_51 | AC | 1,682 ms
129,028 KB |
testcase_52 | AC | 1,393 ms
129,056 KB |
testcase_53 | AC | 485 ms
129,928 KB |
testcase_54 | AC | 319 ms
129,360 KB |
testcase_55 | AC | 197 ms
129,196 KB |
testcase_56 | AC | 680 ms
129,936 KB |
testcase_57 | AC | 1,649 ms
129,884 KB |
testcase_58 | AC | 2,806 ms
129,180 KB |
testcase_59 | AC | 1,720 ms
129,172 KB |
testcase_60 | AC | 1,354 ms
129,204 KB |
testcase_61 | AC | 231 ms
129,152 KB |
testcase_62 | AC | 190 ms
121,688 KB |
testcase_63 | AC | 218 ms
129,792 KB |
testcase_64 | AC | 239 ms
130,108 KB |
testcase_65 | AC | 317 ms
129,776 KB |
testcase_66 | AC | 498 ms
129,748 KB |
testcase_67 | AC | 450 ms
129,380 KB |
testcase_68 | AC | 1,222 ms
129,784 KB |
testcase_69 | AC | 1,420 ms
129,992 KB |
testcase_70 | AC | 2,224 ms
128,956 KB |
testcase_71 | AC | 2,202 ms
129,224 KB |
testcase_72 | AC | 251 ms
129,164 KB |
testcase_73 | AC | 240 ms
129,388 KB |
testcase_74 | AC | 232 ms
129,400 KB |
testcase_75 | AC | 216 ms
129,172 KB |
testcase_76 | AC | 208 ms
129,312 KB |
ソースコード
import bisect import copy import decimal import fractions import heapq import itertools import math import random import sys import time from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines write=sys.stdout.write #import pypyjit #pypyjit.set_param('max_unroll_recursion=-1') #sys.set_int_max_str_digits(10**9) def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=None): self.p=p self.e=e if self.e==None: self.mod=self.p else: self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: #assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] if self.e==None: for i in range(1,N+1): self.factorial.append(self.factorial[-1]*i%self.mod) else: self.cnt=[0]*(N+1) for i in range(1,N+1): self.cnt[i]=self.cnt[i-1] ii=i while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append(self.factorial[-1]*ii%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Build_Inverse(self,N): self.inverse=[None]*(N+1) assert self.p>N self.inverse[1]=1 for n in range(2,N+1): if n%self.p==0: continue a,b=divmod(self.mod,n) self.inverse[n]=(-a*self.inverse[b])%self.mod def Inverse(self,n): return self.inverse[n] def Fact(self,N): if N<0: return 0 retu=self.factorial[N] if self.e!=None and self.cnt[N]: retu*=pow(self.p,self.cnt[N],self.mod)%self.mod retu%=self.mod return retu def Fact_Inve(self,N): if self.e!=None and self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod if self.e!=None: cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu H,W,K=map(int,readline().split()) H-=1;W-=1 K//=2 mod=998244353 MD=MOD(mod) MD.Build_Fact(H+W) N=min(H,W) ans=0 if K<=300: for h in range(N+1): if h: prev=dp dp=[0]*(2*K+1) else: dp=[0]*(2*K+1) dp[K]=1 for w in range(max(h-K,0),min(h+K,N)+1): if h and abs((h-1)-w)<=K: dp[w-h+K]+=prev[w-(h-1)+K] if w and abs(h-(w-1))<=K: dp[w-h+K]+=dp[(w-1)-h+K] dp[w-h+K]%=mod ans+=MD.Fact(H+W)*MD.Fact_Inve(H-h)%mod*MD.Fact_Inve(W-h)%mod*MD.Fact_Inve(2*h)%mod*dp[K]%mod ans%=mod else: for cnt in range(N+1): s=MD.Comb(2*cnt,cnt) for i in range(1,cnt//(K+1)+1): if i%2: s-=2*MD.Comb(2*cnt,cnt-(K+1)*i) else: s+=2*MD.Comb(2*cnt,cnt-(K+1)*i) s%=mod ans+=MD.Fact(H+W)*MD.Fact_Inve(H-cnt)%mod*MD.Fact_Inve(W-cnt)%mod*MD.Fact_Inve(2*cnt)%mod*s%mod ans%=mod print(ans)