結果

問題 No.1388 Less than K
ユーザー vwxyzvwxyz
提出日時 2023-11-19 02:24:49
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 4,018 bytes
コンパイル時間 419 ms
コンパイル使用メモリ 81,916 KB
実行使用メモリ 99,336 KB
最終ジャッジ日時 2024-09-26 06:08:45
合計ジャッジ時間 14,122 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 40 TLE * 1 -- * 33
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
readline=sys.stdin.readline

def Extended_Euclid(n,m):
    stack=[]
    while m:
        stack.append((n,m))
        n,m=m,n%m
    if n>=0:
        x,y=1,0
    else:
        x,y=-1,0
    for i in range(len(stack)-1,-1,-1):
        n,m=stack[i]
        x,y=y,x-(n//m)*y
    return x,y

class MOD:
    def __init__(self,p,e=None):
        self.p=p
        self.e=e
        if self.e==None:
            self.mod=self.p
        else:
            self.mod=self.p**self.e

    def Pow(self,a,n):
        a%=self.mod
        if n>=0:
            return pow(a,n,self.mod)
        else:
            #assert math.gcd(a,self.mod)==1
            x=Extended_Euclid(a,self.mod)[0]
            return pow(x,-n,self.mod)

    def Build_Fact(self,N):
        assert N>=0
        self.factorial=[1]
        if self.e==None:
            for i in range(1,N+1):
                self.factorial.append(self.factorial[-1]*i%self.mod)
        else:
            self.cnt=[0]*(N+1)
            for i in range(1,N+1):
                self.cnt[i]=self.cnt[i-1]
                ii=i
                while ii%self.p==0:
                    ii//=self.p
                    self.cnt[i]+=1
                self.factorial.append(self.factorial[-1]*ii%self.mod)
        self.factorial_inve=[None]*(N+1)
        self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
        for i in range(N-1,-1,-1):
            ii=i+1
            while ii%self.p==0:
                ii//=self.p
            self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod

    def Build_Inverse(self,N):
        self.inverse=[None]*(N+1)
        assert self.p>N
        self.inverse[1]=1
        for n in range(2,N+1):
            if n%self.p==0:
                continue
            a,b=divmod(self.mod,n)
            self.inverse[n]=(-a*self.inverse[b])%self.mod
    
    def Inverse(self,n):
        return self.inverse[n]

    def Fact(self,N):
        if N<0:
            return 0
        retu=self.factorial[N]
        if self.e!=None and self.cnt[N]:
            retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
            retu%=self.mod
        return retu

    def Fact_Inve(self,N):
        if self.e!=None and self.cnt[N]:
            return None
        return self.factorial_inve[N]

    def Comb(self,N,K,divisible_count=False):
        if K<0 or K>N:
            return 0
        retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
        if self.e!=None:
            cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
            if divisible_count:
                return retu,cnt
            else:
                retu*=pow(self.p,cnt,self.mod)
                retu%=self.mod
        return retu

H,W,K=map(int,readline().split())
H-=1;W-=1
K//=2
mod=998244353
fact=[1]+[i for i in range(1,H+W+1)]
for i in range(1,H+W+1):
    fact[i]*=fact[i-1]
    fact[i]%=mod
fact_inve=[i for i in range(1,H+W+1)]+[pow(fact[H+W],mod-2,mod)]
for i in range(H+W-1,-1,-1):
    fact_inve[i]*=fact_inve[i+1]
    fact_inve[i]%=mod
N=min(H,W)
ans=0
if K<=600:
    for h in range(N+1):
        if h:
            prev=dp
            dp=[0]*(2*K+1)
        else:
            dp=[0]*(2*K+1)
            dp[K]=1
        for w in range(max(h-K,0),min(h+K,N)+1):
            if h and abs((h-1)-w)<=K:
                dp[w-h+K]+=prev[w-(h-1)+K]
            if w and abs(h-(w-1))<=K:
                dp[w-h+K]+=dp[(w-1)-h+K]
            dp[w-h+K]%=mod
        ans+=fact[H+W]*fact_inve[H-h]%mod*fact_inve[W-h]%mod*fact_inve[2*h]%mod*dp[K]%mod
        ans%=mod
else:
    for cnt in range(N+1):
        s=fact[2*cnt]*fact_inve[cnt]%mod*fact_inve[cnt]%mod
        for i in range(1,cnt//(K+1)+1):
            if i%2:
                s-=2*fact[2*cnt]*fact_inve[cnt-(K+1)*i]%mod*fact_inve[cnt+(K+1)*i]%mod
            else:
                s+=2*fact[2*cnt]*fact_inve[cnt-(K+1)*i]%mod*fact_inve[cnt+(K+1)*i]%mod
            s%=mod
        ans+=fact[H+W]*fact_inve[H-cnt]%mod*fact_inve[W-cnt]%mod*fact_inve[2*cnt]%mod*s%mod
        ans%=mod
print(ans)
0