結果

問題 No.2555 Intriguing Triangle
ユーザー NyaanNyaanNyaanNyaan
提出日時 2023-12-01 00:19:15
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 15,351 bytes
コンパイル時間 2,488 ms
コンパイル使用メモリ 259,284 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-26 15:20:22
合計ジャッジ時間 3,316 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 1 ms
6,940 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 2 ms
6,944 KB
testcase_12 AC 2 ms
6,944 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 2 ms
6,940 KB
testcase_15 AC 2 ms
6,940 KB
testcase_16 AC 2 ms
6,940 KB
testcase_17 AC 1 ms
6,944 KB
testcase_18 WA -
testcase_19 AC 2 ms
6,944 KB
testcase_20 AC 2 ms
6,940 KB
testcase_21 AC 4 ms
6,944 KB
testcase_22 WA -
testcase_23 AC 2 ms
6,944 KB
testcase_24 AC 2 ms
6,944 KB
testcase_25 AC 2 ms
6,940 KB
testcase_26 AC 2 ms
6,944 KB
testcase_27 AC 2 ms
6,944 KB
testcase_28 AC 2 ms
6,944 KB
testcase_29 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 * date   : 2023-12-01 00:19:08
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

template <typename T>
T Rev(const T &v) {
  T res = v;
  reverse(begin(res), end(res));
  return res;
}

template <typename T>
vector<T> Transpose(const vector<T> &v) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      res[j][i] = v[i][j];
    }
  }
  return res;
}

template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      if (clockwise) {
        res[W - 1 - j][i] = v[i][j];
      } else {
        res[j][H - 1 - i] = v[i][j];
      }
    }
  }
  return res;
}

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//



using namespace std;

using Real = long double;
using Point = complex<Real>;
using Points = vector<Point>;
constexpr Real EPS = 1e-9;
constexpr Real pi = 3.141592653589793238462643383279L;
istream &operator>>(istream &is, Point &p) {
  Real a, b;
  is >> a >> b;
  p = Point(a, b);
  return is;
}
ostream &operator<<(ostream &os, Point &p) {
  return os << real(p) << " " << imag(p);
}
inline bool eq(Real a, Real b) { return fabs(b - a) < EPS; }
int sign(Real a) { return eq(a, 0) ? 0 : a > 0 ? 1 : -1; }

Point operator*(const Point &p, const Real &d) {
  return Point(real(p) * d, imag(p) * d);
}

namespace std {
bool operator<(const Point &a, const Point &b) {
  return a.real() != b.real() ? a.real() < b.real() : a.imag() < b.imag();
}
}  // namespace std

Real cross(const Point &a, const Point &b) {
  return real(a) * imag(b) - imag(a) * real(b);
}
Real dot(const Point &a, const Point &b) {
  return real(a) * real(b) + imag(a) * imag(b);
}

// ccw 点の進行方向
int ccw(const Point &a, Point b, Point c) {
  b = b - a, c = c - a;
  if (cross(b, c) > EPS) return +1;   // 反時計回り
  if (cross(b, c) < -EPS) return -1;  // 時計回り
  if (dot(b, c) < 0) return +2;       // c-a-bの順で一直線
  if (norm(b) < norm(c)) return -2;   // a-b-cの順で一直線
  return 0;                           // a-c-bの順で一直線
}

// a-bベクトルとb-cベクトルのなす角度のうち小さい方を返す
// (ベクトル同士のなす角、すなわち幾何でいうところの「外角」であることに注意!)
// rem. 凸包に対して反時計回りにこの関数を適用すると、
// 凸包の大きさにかかわらず和が360度になる(いわゆる外角の和)(AGC021-B)
Real get_angle(const Point &a, const Point &b, const Point &c) {
  const Point v(b - a), w(c - b);
  Real alpha = atan2(v.imag(), v.real()), beta = atan2(w.imag(), w.real());
  if (alpha > beta) swap(alpha, beta);
  Real theta = (beta - alpha);
  return min(theta, 2 * acos(-1) - theta);
}

//  反時計回りである自己交差のない多角形のclass
using Polygon = vector<Point>;

// 凸包
Polygon convex_hull(vector<Point> ps) {
  int n = (int)ps.size(), k = 0;
  if (n <= 2) return ps;
  sort(ps.begin(), ps.end());
  vector<Point> ch(2 * n);
  // 反時計周りに凸包を構築していく
  for (int i = 0; i < n; ch[k++] = ps[i++]) {
    // 条件分岐内はwhile(k >= 2 && ccw(ch[k-2],ch[k-1],ps[i]) != 1)と等価
    while (k >= 2 && cross(ch[k - 1] - ch[k - 2], ps[i] - ch[k - 1]) < EPS) --k;
  }
  for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--]) {
    while (k >= t && cross(ch[k - 1] - ch[k - 2], ps[i] - ch[k - 1]) < EPS) --k;
  }
  ch.resize(k - 1);
  return ch;
}

// 多角形の面積
Real area(const Polygon &p) {
  Real A = 0;
  for (int i = 0; i < (int)p.size(); ++i) {
    A += cross(p[i], p[(i + 1) % p.size()]);
  }
  return A * 0.5;
}

struct Circle {
  Point p;
  Real r;

  Circle() = default;
  Circle(Point _p, Real _r) : p(_p), r(_r) {}
};

using Circles = vector<Circle>;

int intersect(Circle c1, Circle c2) {
  if (c1.r < c2.r) swap(c1, c2);
  Real d = abs(c1.p - c2.p);
  if (c1.r + c2.r < d) return 4;
  if (eq(c1.r + c2.r, d)) return 3;
  if (c1.r - c2.r < d) return 2;
  if (eq(c1.r - c2.r, d)) return 1;
  return 0;
}

pair<Point, Point> crosspoint(const Circle &c1, const Circle &c2) {
  Real d = abs(c1.p - c2.p);
  Real x = (c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d);
  if (abs(x) > 1) x = (x > 0 ? 1.0 : -1.0);
  Real a = acos(x);
  Real t = atan2(c2.p.imag() - c1.p.imag(), c2.p.real() - c1.p.real());
  Point p1 = c1.p + Point(cos(t + a) * c1.r, sin(t + a) * c1.r);
  Point p2 = c1.p + Point(cos(t - a) * c1.r, sin(t - a) * c1.r);
  return {p1, p2};
}


using namespace Nyaan;

// c の向かいの角度
double yogen(double a, double b, double c) {
  return (a * a + b * b - c * c) / (2 * a * b);
}

void q() {
  ini(a, b, c);
  rep1(d, 200) rep1(e, 200) {
    if (c + b <= a + d + e) continue;
    double f = a + d + e;
    double t = acos(yogen(b, c, a + d + e));

    Point A{0, 0};
    Point B{double(b), 0};
    Point C{c * cos(t), c * sin(t)};

    double invf = 1.0 / f;
    Point D = (B * (a + e) + C * d) * invf;
    Point E = (B * e + C * (a + d)) * invf;

    double t1 = yogen(b, abs(A - D), d);
    double t2 = yogen(c, abs(A - E), e);

    if (d == 1 and e == 6) {
      trc(abs(C - E));
      trc(abs(B - D));
      trc(abs(B - C));
    }
    if (abs(t1 - t2) < 1e-14) {
      out("Yes");
      return;
    }
  }
  out("No");
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}
0