結果
問題 | No.2555 Intriguing Triangle |
ユーザー | tko919 |
提出日時 | 2023-12-01 19:56:46 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 5 ms / 2,000 ms |
コード長 | 17,110 bytes |
コンパイル時間 | 3,220 ms |
コンパイル使用メモリ | 229,172 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-26 15:47:40 |
合計ジャッジ時間 | 3,856 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 3 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 5 ms
5,376 KB |
testcase_22 | AC | 1 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
ソースコード
#line 1 "library/Template/template.hpp" #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++) #define ALL(v) (v).begin(),(v).end() #define UNIQUE(v) sort(ALL(v)),(v).erase(unique(ALL(v)),(v).end()) #define MIN(v) *min_element(ALL(v)) #define MAX(v) *max_element(ALL(v)) #define LB(v,x) lower_bound(ALL(v),(x))-(v).begin() #define UB(v,x) upper_bound(ALL(v),(x))-(v).begin() using ll=long long int; using ull=unsigned long long; const int inf = 0x3fffffff; const ll INF = 0x1fffffffffffffff; template<typename T>inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;} template<typename T>inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;} template<typename T,typename U>T ceil(T x,U y){assert(y!=0); if(y<0)x=-x,y=-y; return (x>0?(x+y-1)/y:x/y);} template<typename T,typename U>T floor(T x,U y){assert(y!=0); if(y<0)x=-x,y=-y; return (x>0?x/y:(x-y+1)/y);} template<typename T>int popcnt(T x){return __builtin_popcountll(x);} template<typename T>int topbit(T x){return (x==0?-1:63-__builtin_clzll(x));} template<typename T>int lowbit(T x){return (x==0?-1:__builtin_ctzll(x));} #line 2 "library/Utility/fastio.hpp" #include <unistd.h> class FastIO{ static constexpr int L=1<<16; char rdbuf[L]; int rdLeft=0,rdRight=0; inline void reload(){ int len=rdRight-rdLeft; memmove(rdbuf,rdbuf+rdLeft,len); rdLeft=0,rdRight=len; rdRight+=fread(rdbuf+len,1,L-len,stdin); } inline bool skip(){ for(;;){ while(rdLeft!=rdRight and rdbuf[rdLeft]<=' ')rdLeft++; if(rdLeft==rdRight){ reload(); if(rdLeft==rdRight)return false; } else break; } return true; } template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline bool _read(T& x){ if(!skip())return false; if(rdLeft+20>=rdRight)reload(); bool neg=false; if(rdbuf[rdLeft]=='-'){ neg=true; rdLeft++; } x=0; while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){ x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48)); } return true; } inline bool _read(__int128_t& x){ if(!skip())return false; if(rdLeft+40>=rdRight)reload(); bool neg=false; if(rdbuf[rdLeft]=='-'){ neg=true; rdLeft++; } x=0; while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){ x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48)); } return true; } inline bool _read(__uint128_t& x){ if(!skip())return false; if(rdLeft+40>=rdRight)reload(); x=0; while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){ x=x*10+(rdbuf[rdLeft++]^48); } return true; } template<typename T,enable_if_t<is_floating_point<T>::value,int> =0>inline bool _read(T& x){ if(!skip())return false; if(rdLeft+20>=rdRight)reload(); bool neg=false; if(rdbuf[rdLeft]=='-'){ neg=true; rdLeft++; } x=0; while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){ x=x*10+(rdbuf[rdLeft++]^48); } if(rdbuf[rdLeft]!='.')return true; rdLeft++; T base=.1; while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){ x+=base*(rdbuf[rdLeft++]^48); base*=.1; } if(neg)x=-x; return true; } inline bool _read(char& x){ if(!skip())return false; if(rdLeft+1>=rdRight)reload(); x=rdbuf[rdLeft++]; return true; } inline bool _read(string& x){ if(!skip())return false; for(;;){ int pos=rdLeft; while(pos<rdRight and rdbuf[pos]>' ')pos++; x.append(rdbuf+rdLeft,pos-rdLeft); if(rdLeft==pos)break; rdLeft=pos; if(rdLeft==rdRight)reload(); else break; } return true; } template<typename T>inline bool _read(vector<T>& v){ for(auto& x:v){ if(!_read(x))return false; } return true; } char wtbuf[L],tmp[50]; int wtRight=0; inline void flush(){ fwrite(wtbuf,1,wtRight,stdout); wtRight=0; } inline void _write(const char& x){ if(wtRight>L-32)flush(); wtbuf[wtRight++]=x; } inline void _write(const string& x){ for(auto& c:x)_write(c); } template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline void _write(T x){ if(wtRight>L-32)flush(); if(x==0){ _write('0'); return; } else if(x<0){ _write('-'); if (__builtin_expect(x == std::numeric_limits<T>::min(), 0)) { switch (sizeof(x)) { case 2: _write("32768"); return; case 4: _write("2147483648"); return; case 8: _write("9223372036854775808"); return; } } x=-x; } int pos=0; while(x!=0){ tmp[pos++]=char((x%10)|48); x/=10; } rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i]; wtRight+=pos; } inline void _write(__int128_t x){ if(wtRight>L-40)flush(); if(x==0){ _write('0'); return; } else if(x<0){ _write('-'); x=-x; } int pos=0; while(x!=0){ tmp[pos++]=char((x%10)|48); x/=10; } rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i]; wtRight+=pos; } inline void _write(__uint128_t x){ if(wtRight>L-40)flush(); if(x==0){ _write('0'); return; } int pos=0; while(x!=0){ tmp[pos++]=char((x%10)|48); x/=10; } rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i]; wtRight+=pos; } template<typename T>inline void _write(const vector<T>& v){ rep(i,0,v.size()){ if(i)_write(' '); _write(v[i]); } } public: FastIO(){} ~FastIO(){flush();} inline void read(){} template <typename Head, typename... Tail>inline void read(Head& head,Tail&... tail){ assert(_read(head)); read(tail...); } template<bool ln=true,bool space=false>inline void write(){if(ln)_write('\n');} template <bool ln=true,bool space=false,typename Head, typename... Tail>inline void write(const Head& head,const Tail&... tail){ if(space)_write(' '); _write(head); write<ln,true>(tail...); } }; /** * @brief Fast IO */ #line 3 "sol.cpp" #line 2 "library/Geometry/geometry.hpp" using T=double; const T eps=1e-12; using Point=complex<T>; using Poly=vector<Point>; #define X real() #define Y imag() inline bool eq(const T& a,const T& b){ return fabs(a-b)<eps; } bool cmp(const Point& a,const Point& b){ auto sub=[&](Point a){return (a.Y<0?-1:(a.Y==0&&a.X>=0?0:1));}; if(sub(a)!=sub(b))return sub(a)<sub(b); return a.Y*b.X<a.X*b.Y; } struct Line{ Point a,b; Line(){} Line(Point _a,Point _b):a(_a),b(_b){} Line(T A,T B,T C){ if(eq(A,.0)){ a=Point(0,C/B),b=Point(1/C/B); } else if(eq(B,.0)){ a=Point(C/A,0),b=Point(C/A,1); } else{ a=Point(0,C/B),b=Point(C/A,0); } } }; struct Segment:Line{ Segment(){} Segment(Point _a,Point _b):Line(_a,_b){} }; struct Circle{ Point p; T r; Circle(){} Circle(Point _p,T _r):p(_p),r(_r){} }; istream& operator>>(istream& is,Point& p){ T x,y; is>>x>>y; p=Point(x,y); return is; } ostream& operator<<(ostream& os,Point& p){ os<<fixed<<setprecision(12)<<p.X<<' '<<p.Y; return os; } Point unit(const Point& a){return a/abs(a);} T dot(const Point& a,const Point& b){ return a.X*b.X+a.Y*b.Y; } T cross(const Point& a,const Point& b){ return a.X*b.Y-a.Y*b.X; } Point rot(const Point& a,const T& theta){ return Point(cos(theta)*a.X-sin(theta)*a.Y, sin(theta)*a.X+cos(theta)*a.Y); } T arg(const Point& a,const Point& b,const Point& c){ return acos(dot(a-b,c-b)/abs(a-b)/abs(c-b)); } Point Projection(const Line&l,const Point& p){ T t=dot(p-l.a,l.a-l.b)/norm(l.a-l.b); return l.a+(l.a-l.b)*t; } Point Projection(const Segment&l,const Point& p){ T t=dot(p-l.a,l.a-l.b)/norm(l.a-l.b); return l.a+(l.a-l.b)*t; } Point Reflection(const Line& l,const Point& p){ return p+(Projection(l,p)-p)*2.; } int ccw(const Point& a,Point b,Point c){ b-=a; c-=a; if(cross(b,c)>eps)return 1; //ccw if(cross(b,c)<-eps)return -1; //cw if(dot(b,c)<0)return 2; //c,a,b if(norm(b)<norm(c))return -2; //a,b,c return 0; //a,c,b } bool isOrthogonal(const Line& a,const Line& b){ return eq(dot(a.b-a.a,b.b-b.a),.0); } bool isParallel(const Line& a,const Line& b){ return eq(cross(a.b-a.a,b.b-b.a),.0); } bool isIntersect(const Segment& a,const Segment& b){ return ccw(a.a,a.b,b.a)*ccw(a.a,a.b,b.b)<=0 and ccw(b.a,b.b,a.a)*ccw(b.a,b.b,a.b)<=0; } int isIntersect(const Circle& a,const Circle& b){ T d=abs(a.p-b.p); if(d>a.r+b.r+eps)return 4; if(eq(d,a.r+b.r))return 3; if(eq(d,abs(a.r-b.r)))return 1; if(d<abs(a.r-b.r)-eps)return 0; return 2; } T Dist(const Line& a,const Point& b){ Point c=Projection(a,b); return abs(c-b); } T Dist(const Segment& a,const Point& b){ if(dot(a.b-a.a,b-a.a)<eps)return abs(b-a.a); if(dot(a.a-a.b,b-a.b)<eps)return abs(b-a.b); return abs(cross(a.b-a.a,b-a.a))/abs(a.b-a.a); } T Dist(const Segment& a,const Segment& b){ if(isIntersect(a,b))return .0; T res=min({Dist(a,b.a),Dist(a,b.b),Dist(b,a.a),Dist(b,a.b)}); return res; } Point Intersection(const Line& a,const Line& b){ T d1=cross(a.b-a.a,b.b-b.a); T d2=cross(a.b-a.a,a.b-b.a); if(eq(d1,0) and eq(d2,0))return b.a; return b.a+(b.b-b.a)*(d2/d1); } Poly Intersection(const Circle& a,const Line& b){ Poly res; T d=Dist(b,a.p); if(d>a.r+eps)return res; Point h=Projection(b,a.p); if(eq(d,a.r)){ res.push_back(h); return res; } Point e=unit(b.b-b.a); T ph=sqrt(a.r*a.r-d*d); res.push_back(h-e*ph); res.push_back(h+e*ph); return res; } Poly Intersection(const Circle& a,const Segment& b){ Line c(b.a,b.b); Poly sub=Intersection(a,c); double xmi=min(b.a.X,b.b.X),xma=max(b.a.X,b.b.X); double ymi=min(b.a.Y,b.b.Y),yma=max(b.a.Y,b.b.Y); Poly res; rep(i,0,sub.size()){ if(xmi<=sub[i].X+eps and sub[i].X-eps<=xma and ymi<=sub[i].Y+eps and sub[i].Y-eps<=yma){ res.push_back(sub[i]); } } return res; } Poly Intersection(const Circle& a,const Circle& b){ Poly res; int mode=isIntersect(a,b); T d=abs(a.p-b.p); if(mode==4 or mode==0)return res; if(mode==3){ T t=a.r/(a.r+b.r); res.push_back(a.p+(b.p-a.p)*t); return res; } if(mode==1){ if(b.r<a.r-eps){ res.push_back(a.p+(b.p-a.p)*(a.r/d)); } else{ res.push_back(b.p+(a.p-b.p)*(b.r/d)); } return res; } T rc=(a.r*a.r+d*d-b.r*b.r)/d/2.; T rs=sqrt(a.r*a.r-rc*rc); if(a.r-abs(rc)<eps)rs=0; Point e=unit(b.p-a.p); res.push_back(a.p+rc*e+rs*e*Point(0,1)); res.push_back(a.p+rc*e+rs*e*Point(0,-1)); return res; } T Area(const Poly& a){ T res=0; int n=a.size(); rep(i,0,n)res+=cross(a[i],a[(i+1)%n]); return fabs(res/2.); } T Area(const Poly& a,const Circle& b){ int n=a.size(); if(n<3)return .0; auto rec=[&](auto self,const Circle& c,const Point& p1,const Point& p2){ Point va=c.p-p1,vb=c.p-p2; T f=cross(va,vb),res=.0; if(eq(f,.0))return res; if(max(abs(va),abs(vb))<c.r+eps)return f; if(Dist(Segment(p1,p2),c.p)>c.r-eps)return c.r*c.r*arg(vb*conj(va)); auto u=Intersection(c,Segment(p1,p2)); Poly sub; sub.push_back(p1); for(auto& x:u)sub.push_back(x); sub.push_back(p2); rep(i,0,sub.size()-1)res+=self(self,c,sub[i],sub[i+1]); return res; }; T res=.0; rep(i,0,n)res+=rec(rec,b,a[i],a[(i+1)%n]); return fabs(res/2.); } T Area(const Circle& a,const Circle& b){ T d=abs(a.p-b.p); if(d>=a.r+b.r-eps)return .0; if(d<=abs(a.r-b.r)+eps){ T r=min(a.r,b.r); return M_PI*r*r; } T ath=acos((a.r*a.r+d*d-b.r*b.r)/d/a.r/2.); T res=a.r*a.r*(ath-sin(ath*2)/2.); T bth=acos((b.r*b.r+d*d-a.r*a.r)/d/b.r/2.); res+=b.r*b.r*(bth-sin(bth*2)/2.); return fabs(res); } bool isConvex(const Poly& a){ int n=a.size(); int cur,pre,nxt; rep(i,0,n){ pre=(i-1+n)%n; nxt=(i+1)%n; cur=i; if(ccw(a[pre],a[cur],a[nxt])==-1)return 0; } return 1; } int isContained(const Poly& a,const Point& b){ // 0:not contain,1:on edge,2:contain bool res=0; int n=a.size(); rep(i,0,n){ Point p=a[i]-b,q=a[(i+1)%n]-b; if(p.Y>q.Y)swap(p,q); if(p.Y<eps and eps<q.Y and cross(p,q)>eps)res^=1; if(eq(cross(p,q),.0) and dot(p,q)<eps)return 1; } return (res?2:0); } Poly ConvexHull(Poly& a){ int n=a.size(),k=0; sort(ALL(a),[](const Point& p,const Point& q){ return (eq(p.Y,q.Y)?p.X<q.X:p.Y<q.Y); }); Poly res(n*2); for(int i=0;i<n;res[k++]=a[i++]){ while(k>=2 and cross(res[k-1]-res[k-2],a[i]-res[k-1])<-eps)k--; } for(int i=n-2,t=k+1;i>=0;res[k++]=a[i--]){ while(k>=t and cross(res[k-1]-res[k-2],a[i]-res[k-1])<-eps)k--; } res.resize(k-1); return res; } T Diam(const Poly& a){ int n=a.size(); int x=0,y=0; rep(i,1,n){ if(a[i].Y>a[x].Y)x=i; if(a[i].Y<a[y].Y)y=i; } T res=abs(a[x]-a[y]); int i=x,j=y; do{ if(cross(a[(i+1)%n]-a[i],a[(j+1)%n]-a[j])<0)i=(i+1)%n; else j=(j+1)%n; chmax(res,abs(a[i]-a[j])); }while(i!=x or j!=y); return res; } Poly Cut(const Poly& a,const Line& l){ int n=a.size(); Poly res; rep(i,0,n){ Point p=a[i],q=a[(i+1)%n]; if(ccw(l.a,l.b,p)!=-1)res.push_back(p); if(ccw(l.a,l.b,p)*ccw(l.a,l.b,q)<0)res.push_back(Intersection(Line(p,q),l)); } return res; } T Closest(Poly& a){ int n=a.size(); if(n<=1)return 0; sort(ALL(a),[&](Point a,Point b){return (eq(a.X,b.X)?a.Y<b.Y:a.X<b.X);}); Poly buf(n); auto rec=[&](auto self,int lb,int rb)->T{ if(rb-lb<=1)return (T)INF; int mid=(lb+rb)>>1; auto x=a[mid].X; T res=min(self(self,lb,mid),self(self,mid,rb)); inplace_merge(a.begin()+lb,a.begin()+mid,a.begin()+rb, [&](auto p,auto q){return p.Y<q.Y;}); int ptr=0; rep(i,lb,rb){ if(abs(a[i].X-x)>=res)continue; rep(j,0,ptr){ auto sub=a[i]-buf[ptr-1-j]; if(sub.Y>=res)break; chmin(res,abs(sub)); } buf[ptr++]=a[i]; } return res; }; return rec(rec,0,n); } Circle Incircle(const Point& a,const Point& b,const Point& c){ T A=abs(b-c),B=abs(c-a),C=abs(a-b); Point p(A*a.X+B*b.X+C*c.X,A*a.Y+B*b.Y+C*c.Y); p/=(A+B+C); T r=Dist(Line(a,b),p); return Circle(p,r); } Circle Circumcircle(const Point& a,const Point& b,const Point& c){ Line l1((a+b)/2.,(a+b)/2.+(b-a)*Point(0,1)); Line l2((b+c)/2.,(b+c)/2.+(c-b)*Point(0,1)); Point p=Intersection(l1,l2); return Circle(p,abs(p-a)); } Poly tangent(const Point& a,const Circle& b){ return Intersection(b,Circle(a,sqrt(norm(b.p-a)-b.r*b.r))); } vector<Line> tangent(const Circle& a,const Circle& b){ vector<Line> res; T d=abs(a.p-b.p); if(eq(d,0))return res; Point u=unit(b.p-a.p); Point v=u*Point(0,1); for(int t:{-1,1}){ T h=(a.r+b.r*t)/d; if(eq(h*h,1)){ res.push_back(Line(a.p+(h>0?u:-u)*a.r, a.p+(h>0?u:-u)*a.r+v)); } else if(1>h*h){ Point U=u*h,V=v*sqrt(1-h*h); res.push_back(Line(a.p+(U+V)*a.r,b.p-(U+V)*(b.r*t))); res.push_back(Line(a.p+(U-V)*a.r,b.p-(U-V)*(b.r*t))); } } return res; } /** * @brief Geometry */ #line 5 "sol.cpp" FastIO io; int main(){ int a,b,c; io.read(a,b,c); Point A(0,0),B(b,0); rep(x,1,b+c)rep(y,1,b+c){ double cosa=double(b*b+c*c-(x+y+a)*(x+y+a))*1./(2*b*c); if(cosa>1.-eps or fabs(cosa)<eps)continue; if(b+c==x+a+y)continue; Point C=rot(Point(c,0),acos(cosa)); Point D=C*(double(x)/(x+y+a))+B*(double(a+y)/(x+y+a)); Point E=B*(double(y)/(x+y+a))+C*(double(a+x)/(x+y+a)); double diff=fabs(arg(C,A,E)-arg(D,A,B)); if(diff<eps){ io.write("Yes"); cerr<<x<<' '<<y<<'\n'; return 0; } } io.write("No"); return 0; }