結果
問題 | No.2556 Increasing Matrix |
ユーザー |
|
提出日時 | 2023-12-02 01:00:03 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 705 ms / 6,000 ms |
コード長 | 6,295 bytes |
コンパイル時間 | 10,348 ms |
コンパイル使用メモリ | 169,824 KB |
最終ジャッジ日時 | 2025-02-18 03:09:48 |
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 22 |
ソースコード
#include <deque>#include <iostream>#include <vector>#include <atcoder/modint>#include <atcoder/convolution>using mint = atcoder::modint998244353;using polynomial = std::vector<mint>;using formal_power_series = std::vector<mint>;formal_power_series fps_inv(const formal_power_series& f, int n) {assert(f.size() and f[0] != 0);formal_power_series g{ f[0].inv() };for (int k = 1; k < n; k *= 2) {std::vector<mint> f_fft(f.begin(), f.begin() + std::min<int>(2 * k, f.size()));std::vector<mint> g_fft(g.begin(), g.end());f_fft.resize(2 * k);g_fft.resize(2 * k);atcoder::internal::butterfly(f_fft);atcoder::internal::butterfly(g_fft);std::vector<mint> fg(2 * k);for (int i = 0; i < 2 * k; ++i) {fg[i] = f_fft[i] * g_fft[i];}atcoder::internal::butterfly_inv(fg);fg.erase(fg.begin(), fg.begin() + k);fg.resize(2 * k);atcoder::internal::butterfly(fg);for (int i = 0; i < 2 * k; ++i) {fg[i] *= g_fft[i];}atcoder::internal::butterfly_inv(fg);const mint iz = mint(2 * k).inv(), c = -iz * iz;g.resize(2 * k);for (int i = 0; i < k; ++i) {g[k + i] = fg[i] * c;}}g.resize(n);return g;}polynomial operator+(const polynomial& f, const polynomial& g) {const int siz_f = f.size(), siz_g = g.size();polynomial res = f;if (siz_f < siz_g) {res.resize(siz_g);}for (int i = 0; i < siz_g; ++i) {res[i] += g[i];}return res;}polynomial operator-(const polynomial& f, const polynomial& g) {const int siz_f = f.size(), siz_g = g.size();polynomial res = f;if (siz_f < siz_g) {res.resize(siz_g);}for (int i = 0; i < siz_g; ++i) {res[i] -= g[i];}return res;}polynomial operator*(const polynomial& f, const polynomial& g) {return atcoder::convolution(f, g);}polynomial operator/(polynomial f, polynomial g) {while (f.size() and f.back() == 0) f.pop_back();while (g.size() and g.back() == 0) g.pop_back();const int fd = f.size() - 1, gd = g.size() - 1;assert(gd >= 0);if (fd < gd) {return {};}if (gd == 0) {mint inv_g0 = g[0].inv();for (auto&& e : f) e *= inv_g0;return f;}std::reverse(f.begin(), f.end());std::reverse(g.begin(), g.end());const int qd = fd - gd;f.resize(qd + 1);polynomial q = f * fps_inv(g, qd + 1);q.resize(qd + 1);std::reverse(q.begin(), q.end());return q;}polynomial operator%(const polynomial& f, const polynomial& g) {polynomial q = f / g, r = f - g * q;while (r.size() and r.back() == 0) r.pop_back();return r;}mint eval(const polynomial& f, const mint& x) {const int n = f.size();mint y = 0;for (int i = n - 1; i >= 0; --i) {y = uint64_t(y.val()) * x.val() + f[i].val();}return y;}std::vector<mint> middle_product(const std::vector<mint>& a, const std::vector<mint>& b) {const int siz_a = a.size(), siz_b = b.size();assert(siz_a >= siz_b and siz_b);if (std::min(siz_b, siz_a - siz_b + 1) <= 60) {std::vector<mint> res(siz_a - siz_b + 1);for (int i = 0; i <= siz_a - siz_b; ++i) {for (int j = 0; j < siz_b; ++j) {res[i] += b[j] * a[i + j];}}return res;}std::vector<mint> res = atcoder::convolution(a, std::vector<mint>(b.rbegin(), b.rend()));res.resize(siz_a);res.erase(res.begin(), res.begin() + siz_b - 1);return res;}std::vector<mint> multipoint_evaluation(const polynomial& f, const std::vector<mint> &xs) {const int n = f.size(), m = xs.size();if (m == 0) {return {};}if (f.size() <= 60) {std::vector<mint> ys(n);for (int i = 0; i < n; ++i) {ys[i] = eval(f, xs[i]);}return ys;}int k = 1;while (k < m) k *= 2;std::vector<std::vector<mint>> t(2 * k);for (int i = 0; i < m; ++i) {t[k + i] = { 1, -xs[i] };}for (int i = m; i < k; ++i) {t[k + i] = { 1, 0 };}for (int i = k - 1; i; --i) {t[i] = t[2 * i] * t[2 * i + 1];}polynomial f2 = f;f2.resize(2 * n - 1);t[1] = middle_product(f2, fps_inv(t[1], n));t[1].resize(k);for (int i = 1; i < k; ++i) {std::vector<mint> tr = middle_product(t[i], t[2 * i + 0]);std::vector<mint> tl = middle_product(t[i], t[2 * i + 1]);t[2 * i + 0] = std::move(tl);t[2 * i + 1] = std::move(tr);}std::vector<mint> ys(m);for (int i = 0; i < m; ++i) {ys[i] = t[k + i].empty() ? 0 : t[k + i].front();}return ys;}std::vector<mint> product_of_differences(const std::vector<mint>& xs) {// f(x):=Π_i(x-x[i])// => f'(x)=Σ_i Π[j!=i](x-x[j])// => f'(x[i])=Π[j!=i](x[i]-x[j])const int n = xs.size();std::deque<polynomial> dq;for (int i = 0; i < n; ++i) dq.push_back(polynomial{ -xs[i], 1 });while (dq.size() >= 2) {auto f = std::move(dq.front());dq.pop_front();auto g = std::move(dq.front());dq.pop_front();dq.push_back(f * g);}auto f = std::move(dq.front());for (int i = 0; i < n; ++i) {f[i] = f[i + 1] * (i + 1);}f.pop_back();return multipoint_evaluation(f, xs);}int main() {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);int n;std::cin >> n;--n;std::vector<int> d(n);{int p;std::cin >> p;for (int i = 0; i < n; ++i) {int v;std::cin >> v;d[i] = v - p + 1;p = v;}}std::vector<mint> sd(n + 1);for (int i = 0; i < n; ++i) {sd[i + 1] = sd[i] + d[i];}auto res = product_of_differences(sd);mint ans = mint(-1).pow(1LL * (n + 1) * n / 2);for (mint e : res) {ans *= e;}mint fac = 1, facfac = 1;for (int i = 1; i <= n; ++i) {fac *= i;facfac *= fac;}std::cout << (ans / facfac.pow(2)).val() << std::endl;}