結果
| 問題 |
No.132 点と平面との距離
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2015-01-20 19:48:40 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 30 ms / 5,000 ms |
| コード長 | 1,006 bytes |
| コンパイル時間 | 1,622 ms |
| コンパイル使用メモリ | 161,136 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-06-22 23:05:51 |
| 合計ジャッジ時間 | 1,688 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 3 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
struct vec3 {
double x, y, z;
vec3 operator-(const vec3& that){
return vec3{x - that.x, y - that.y, z - that.z};
}
};
vec3 cross(vec3 a, vec3 b){
return vec3{a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x};
}
double dist(vec3 A, vec3 B, vec3 C, vec3 P){
vec3 normal = cross(B - A, C - A);
double a = normal.x;
double b = normal.y;
double c = normal.z;
double d = -(a * A.x + b * A.y + c * A.z);
double res = abs(a * P.x + b * P.y + c * P.z + d) / sqrt(a * a + b * b + c * c);
return res;
}
int main(){
int N;
cin >> N;
vec3 P;
cin >> P.x >> P.y >> P.z;
vector<vec3> Q(N);
for(int i=0;i<N;i++){
cin >> Q[i].x >> Q[i].y >> Q[i].z;
}
double res = 0;
for(int i=0;i<N;i++)for(int j=i+1;j<N;j++)for(int k=j+1;k<N;k++){
res += dist(Q[i], Q[j], Q[k], P);
}
printf("%.15f\n", res);
return 0;
}