結果
| 問題 |
No.2555 Intriguing Triangle
|
| コンテスト | |
| ユーザー |
mkawa2
|
| 提出日時 | 2023-12-02 18:58:26 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,905 ms / 2,000 ms |
| コード長 | 3,997 bytes |
| コンパイル時間 | 351 ms |
| コンパイル使用メモリ | 82,048 KB |
| 実行使用メモリ | 201,856 KB |
| 最終ジャッジ日時 | 2024-09-26 21:28:39 |
| 合計ジャッジ時間 | 17,712 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 28 |
ソースコード
import sys
# sys.setrecursionlimit(1000005)
# sys.set_int_max_str_digits(200005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()
dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
inf = -1-(-1 << 31)
# inf = -1-(-1 << 63)
# md = 10**9+7
md = 998244353
class Sieve:
def __init__(self, n):
self.plist = [2]
min_prime_factor = [2, 0]*(n//2+1)
for x in range(3, n+1, 2):
if min_prime_factor[x] == 0:
min_prime_factor[x] = x
self.plist.append(x)
if x**2 > n: continue
for y in range(x**2, n+1, 2*x):
if min_prime_factor[y] == 0:
min_prime_factor[y] = x
self.min_prime_factor = min_prime_factor
def isprime(self, x):
return self.min_prime_factor[x] == x
def pf(self, x):
pp, ee = [], []
while x > 1:
mpf = self.min_prime_factor[x]
if pp and mpf == pp[-1]:
ee[-1] += 1
else:
pp.append(mpf)
ee.append(1)
x //= mpf
return pp, ee
# unsorted
def factor(self, a):
ff = [1]
pp, ee = self.pf(a)
for p, e in zip(pp, ee):
ff, gg = [], ff
w = p
for _ in range(e):
for f in gg: ff.append(f*w)
w *= p
ff += gg
return ff
sv=Sieve(10**7)
# 実数 a√b/c
class Real:
def gcd(self,a,b):
while b:a,b=b,a%b
return a
def __init__(self,a,b=1,c=1):
assert b>0 and c>0
for p in sv.plist:
q=p**2
while b%q==0:
a*=p
b//=q
if q > b: break
g=self.gcd(a,c)
a//=g
c//=g
self.a,self.b,self.c=a,b,c
def __add__(self, other):
assert self.b==other.b
g=self.gcd(self.c,other.c)
c=self.c*other.c//g
a=self.a*other.c//g+self.c*other.a//g
return Real(a,self.b,c)
def __sub__(self, other):
assert self.b==other.b
g=self.gcd(self.c,other.c)
c=self.c*other.c//g
a=self.a*other.c//g-self.c*other.a//g
return Real(a,self.b,c)
def __mul__(self, other):
return Real(self.a*other.a,self.b*other.b,self.c*other.c)
def __truediv__(self, other):
return self*Real(other.c,other.b,other.a*other.b)
def __eq__(self, other):
return self.a==other.a and self.b==other.b and self.c==other.c
def __pow__(self, power, modulo=None):
return Real(self.a**2*self.b,1,self.c**2)
def sqrt(self):
assert self.b==1
return Real(1,self.a*self.c,self.c)
def __repr__(self):
return str(self.a)+"√"+str(self.b)+"/"+str(self.c)
def val(self):
return self.a*self.b**0.5/self.c
def yog(b,c,cosA):
return (b**2+c**2-Real(2)*b*c*cosA).sqrt()
def inv_yog(a,b,c):
return (b**2+c**2-a**2)/(Real(2)*b*c)
def f(a,b,c,x,y):
a=Real(a)
b=Real(b)
c=Real(c)
x=Real(x)
y=Real(y)
cosB=inv_yog(c,b,x+a+y)
AD=yog(b,x,cosB)
res=inv_yog(x,b,AD)
return res
a=II()
b=II()
c=II()
if b<c:b,c=c,b
for x in range(1,b+c-a-1):
for y in range(max(1,b+1-x-a-c),b+c-x-a):
# print(x,y,f(a,b,c,x,y),f(a,c,b,y,x))
f1=f(a,b,c,x,y)
f2=f(a,c,b,y,x)
# print(x,y,abs(f1.val()-f2.val()))
if f1==f2:
print("Yes")
exit()
print("No")
mkawa2