結果
問題 | No.2582 Random Average^K |
ユーザー | siro53 |
提出日時 | 2023-12-10 02:34:54 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 30,292 bytes |
コンパイル時間 | 7,688 ms |
コンパイル使用メモリ | 351,848 KB |
実行使用メモリ | 181,584 KB |
最終ジャッジ日時 | 2024-09-27 03:56:35 |
合計ジャッジ時間 | 11,252 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,752 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 8 ms
5,376 KB |
testcase_07 | AC | 5 ms
5,376 KB |
testcase_08 | AC | 8 ms
5,376 KB |
testcase_09 | TLE | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
ソースコード
#pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #pragma region Macros #include <bits/stdc++.h> using namespace std; // input output utils namespace siro53_io { // https://maspypy.github.io/library/other/io_old.hpp struct has_val_impl { template <class T> static auto check(T &&x) -> decltype(x.val(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_val : public decltype(has_val_impl::check<T>(std::declval<T>())) { }; // debug template <class T, enable_if_t<is_integral<T>::value, int> = 0> void dump(const T t) { cerr << t; } template <class T, enable_if_t<is_floating_point<T>::value, int> = 0> void dump(const T t) { cerr << t; } template <class T, typename enable_if<has_val<T>::value>::type * = nullptr> void dump(const T &t) { cerr << t.val(); } void dump(__int128_t n) { if(n == 0) { cerr << '0'; return; } else if(n < 0) { cerr << '-'; n = -n; } string s; while(n > 0) { s += (char)('0' + n % 10); n /= 10; } reverse(s.begin(), s.end()); cerr << s; } void dump(const string &s) { cerr << s; } void dump(const char *s) { int n = (int)strlen(s); for(int i = 0; i < n; i++) cerr << s[i]; } template <class T1, class T2> void dump(const pair<T1, T2> &p) { cerr << '('; dump(p.first); cerr << ','; dump(p.second); cerr << ')'; } template <class T> void dump(const vector<T> &v) { cerr << '{'; for(int i = 0; i < (int)v.size(); i++) { dump(v[i]); if(i < (int)v.size() - 1) cerr << ','; } cerr << '}'; } template <class T> void dump(const set<T> &s) { cerr << '{'; for(auto it = s.begin(); it != s.end(); it++) { dump(*it); if(next(it) != s.end()) cerr << ','; } cerr << '}'; } template <class Key, class Value> void dump(const map<Key, Value> &mp) { cerr << '{'; for(auto it = mp.begin(); it != mp.end(); it++) { dump(*it); if(next(it) != mp.end()) cerr << ','; } cerr << '}'; } template <class Key, class Value> void dump(const unordered_map<Key, Value> &mp) { cerr << '{'; for(auto it = mp.begin(); it != mp.end(); it++) { dump(*it); if(next(it) != mp.end()) cerr << ','; } cerr << '}'; } template <class T> void dump(const deque<T> &v) { cerr << '{'; for(int i = 0; i < (int)v.size(); i++) { dump(v[i]); if(i < (int)v.size() - 1) cerr << ','; } cerr << '}'; } template <class T> void dump(queue<T> q) { cerr << '{'; while(!q.empty()) { dump(q.front()); if((int)q.size() > 1) cerr << ','; q.pop(); } cerr << '}'; } void debug_print() { cerr << endl; } template <class Head, class... Tail> void debug_print(const Head &h, const Tail &...t) { dump(h); if(sizeof...(Tail)) dump(' '); debug_print(t...); } // print template <class T, enable_if_t<is_integral<T>::value, int> = 0> void print_single(const T t) { cout << t; } template <class T, enable_if_t<is_floating_point<T>::value, int> = 0> void print_single(const T t) { cout << t; } template <class T, typename enable_if<has_val<T>::value>::type * = nullptr> void print_single(const T t) { cout << t.val(); } void print_single(__int128_t n) { if(n == 0) { cout << '0'; return; } else if(n < 0) { cout << '-'; n = -n; } string s; while(n > 0) { s += (char)('0' + n % 10); n /= 10; } reverse(s.begin(), s.end()); cout << s; } void print_single(const string &s) { cout << s; } void print_single(const char *s) { int n = (int)strlen(s); for(int i = 0; i < n; i++) cout << s[i]; } template <class T1, class T2> void print_single(const pair<T1, T2> &p) { print_single(p.first); cout << ' '; print_single(p.second); } template <class T> void print_single(const vector<T> &v) { for(int i = 0; i < (int)v.size(); i++) { print_single(v[i]); if(i < (int)v.size() - 1) cout << ' '; } } template <class T> void print_single(const set<T> &s) { for(auto it = s.begin(); it != s.end(); it++) { print_single(*it); if(next(it) != s.end()) cout << ' '; } } template <class T> void print_single(const deque<T> &v) { for(int i = 0; i < (int)v.size(); i++) { print_single(v[i]); if(i < (int)v.size() - 1) cout << ' '; } } template <class T> void print_single(queue<T> q) { while(!q.empty()) { print_single(q.front()); if((int)q.size() > 1) cout << ' '; q.pop(); } } void print() { cout << '\n'; } template <class Head, class... Tail> void print(const Head &h, const Tail &...t) { print_single(h); if(sizeof...(Tail)) print_single(' '); print(t...); } // input template <class T, enable_if_t<is_integral<T>::value, int> = 0> void input_single(T &t) { cin >> t; } template <class T, enable_if_t<is_floating_point<T>::value, int> = 0> void input_single(T &t) { cin >> t; } template <class T, typename enable_if<has_val<T>::value>::type * = nullptr> void input_single(T &t) { cin >> t; } void input_single(__int128_t &n) { string s; cin >> s; if(s == "0") { n = 0; return; } bool is_minus = false; if(s[0] == '-') { s = s.substr(1); is_minus = true; } n = 0; for(int i = 0; i < (int)s.size(); i++) n = n * 10 + (int)(s[i] - '0'); if(is_minus) n = -n; } void input_single(string &s) { cin >> s; } template <class T1, class T2> void input_single(pair<T1, T2> &p) { input_single(p.first); input_single(p.second); } template <class T> void input_single(vector<T> &v) { for(auto &e : v) input_single(e); } void input() {} template <class Head, class... Tail> void input(Head &h, Tail &...t) { input_single(h); input(t...); } }; // namespace siro53_io #ifdef DEBUG #define debug(...) \ cerr << __LINE__ << " [" << #__VA_ARGS__ << "]: ", debug_print(__VA_ARGS__) #else #define debug(...) (void(0)) #endif // io setup struct Setup { Setup() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } __Setup; using namespace siro53_io; // types using ll = long long; using i128 = __int128_t; // input macros #define INT(...) \ int __VA_ARGS__; \ input(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ input(__VA_ARGS__) #define STRING(...) \ string __VA_ARGS__; \ input(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ input(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ input(__VA_ARGS__) #define LD(...) \ long double __VA_ARGS__; \ input(__VA_ARGS__) #define UINT(...) \ unsigned int __VA_ARGS__; \ input(__VA_ARGS__) #define ULL(...) \ unsigned long long __VA_ARGS__; \ input(__VA_ARGS__) #define VEC(name, type, len) \ vector<type> name(len); \ input(name); #define VEC2(name, type, len1, len2) \ vector name(len1, vector<type>(len2)); \ input(name); // other macros // https://trap.jp/post/1224/ #define OVERLOAD3(_1, _2, _3, name, ...) name #define ALL(v) (v).begin(), (v).end() #define RALL(v) (v).rbegin(), (v).rend() #define REP1(i, n) for(int i = 0; i < int(n); i++) #define REP2(i, a, b) for(int i = (a); i < int(b); i++) #define REP(...) OVERLOAD3(__VA_ARGS__, REP2, REP1)(__VA_ARGS__) #define SORT(v) sort(ALL(v)) #define RSORT(v) sort(RALL(v)) #define UNIQUE(v) \ sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end()), v.shrink_to_fit() #define REV(v) reverse(ALL(v)) #define SZ(v) ((int)(v).size()) #define MIN(v) (*min_element(ALL(v))) #define MAX(v) (*max_element(ALL(v))) // util const const int INF = 1 << 30; const ll LLINF = 1LL << 60; constexpr int MOD = 1000000007; constexpr int MOD2 = 998244353; const int dx[4] = {1, 0, -1, 0}; const int dy[4] = {0, 1, 0, -1}; // util functions void Case(int i) { cout << "Case #" << i << ": "; } int popcnt(int x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } template <class T> inline bool chmax(T &a, T b) { return (a < b ? a = b, true : false); } template <class T> inline bool chmin(T &a, T b) { return (a > b ? a = b, true : false); } template <class T, size_t dim> auto make_vector_impl(vector<size_t>& sizes, const T &e) { if constexpr(dim == 1) { return vector(sizes[0], e); } else { size_t n = sizes[dim - 1]; sizes.pop_back(); return vector(n, make_vector_impl<T, dim - 1>(sizes, e)); } } template <class T, size_t dim> auto make_vector(const size_t (&sizes)[dim], const T &e) { vector<size_t> s(dim); for(size_t i = 0; i < dim; i++) s[i] = sizes[dim - i - 1]; return make_vector_impl<T, dim>(s, e); } #pragma endregion Macros // https://nyaannyaan.github.io/library/ から借りた #line 2 "modint/modint.hpp" template <int mod> struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+() const { return ModInt(*this); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt<mod>(t); return (is); } int get() const { return x; } static constexpr int get_mod() { return mod; } }; /** * @brief modint */ #line 2 "fps/ntt-friendly-fps.hpp" #line 2 "ntt/ntt.hpp" template <typename mint> struct NTT { static constexpr uint32_t get_pr() { uint32_t _mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = _mod - 1; for (u64 i = 2; i * i <= m; ++i) { if (m % i == 0) { ds[idx++] = i; while (m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t _pr = 2; while (1) { int flg = 1; for (int i = 0; i < idx; ++i) { u64 a = _pr, b = (_mod - 1) / ds[i], r = 1; while (b) { if (b & 1) r = r * a % _mod; a = a * a % _mod; b >>= 1; } if (r == 1) { flg = 0; break; } } if (flg == 1) break; ++_pr; } return _pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level], dy[level]; void setwy(int k) { mint w[level], y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for (int i = k - 2; i > 0; --i) w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for (int i = 3; i < k; ++i) { dw[i] = dw[i - 1] * y[i - 2] * w[i]; dy[i] = dy[i - 1] * w[i - 2] * y[i]; } } NTT() { setwy(level); } void fft4(vector<mint> &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); for (int j = 0; j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while (v) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3; } } // jh >= 1 mint ww = one, xx = one * dw[2], wx = one; for (int jh = 4; jh < u;) { ww = xx * xx, wx = ww * xx; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww, t3 = a[j2 + v] * wx; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3; } xx *= dw[__builtin_ctzll((jh += 4))]; } u <<= 2; v >>= 2; } } void ifft4(vector<mint> &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while (u) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag; a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3; a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3; } } // jh >= 1 mint ww = one, xx = one * dy[2], yy = one; u <<= 2; for (int jh = 4; jh < u;) { ww = xx * xx, yy = xx * imag; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww; a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww; } xx *= dy[__builtin_ctzll(jh += 4)]; } u >>= 4; v <<= 2; } if (k & 1) { u = 1 << (k - 1); for (int j = 0; j < u; ++j) { mint ajv = a[j] - a[j + u]; a[j] += a[j + u]; a[j + u] = ajv; } } } void ntt(vector<mint> &a) { if ((int)a.size() <= 1) return; fft4(a, __builtin_ctz(a.size())); } void intt(vector<mint> &a) { if ((int)a.size() <= 1) return; ifft4(a, __builtin_ctz(a.size())); mint iv = mint(a.size()).inverse(); for (auto &x : a) x *= iv; } vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) { int l = a.size() + b.size() - 1; if (min<int>(a.size(), b.size()) <= 40) { vector<mint> s(l); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j]; return s; } int k = 2, M = 4; while (M < l) M <<= 1, ++k; setwy(k); vector<mint> s(M); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i]; fft4(s, k); if (a.size() == b.size() && a == b) { for (int i = 0; i < M; ++i) s[i] *= s[i]; } else { vector<mint> t(M); for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i]; fft4(t, k); for (int i = 0; i < M; ++i) s[i] *= t[i]; } ifft4(s, k); s.resize(l); mint invm = mint(M).inverse(); for (int i = 0; i < l; ++i) s[i] *= invm; return s; } void ntt_doubling(vector<mint> &a) { int M = (int)a.size(); auto b = a; intt(b); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for (int i = 0; i < M; i++) b[i] *= r, r *= zeta; ntt(b); copy(begin(b), end(b), back_inserter(a)); } }; #line 2 "fps/formal-power-series.hpp" template <typename mint> struct FormalPowerSeries : vector<mint> { using vector<mint>::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const mint &v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inverse(); for (auto &x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(begin(ret), end(ret)); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } // 前 sz 項を取ってくる。sz に足りない項は 0 埋めする FPS pre(int sz) const { FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz)); if ((int)ret.size() < sz) ret.resize(sz); return ret; } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::get_mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto &v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert(!(*this).empty() && (*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; if (k == 0) { FPS ret(deg); if (deg) ret[0] = 1; return ret; } for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg); ret *= (*this)[i].pow(k); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0)); } return FPS(deg, mint(0)); } static void *ntt_ptr; static void set_fft(); FPS &operator*=(const FPS &r); void ntt(); void intt(); void ntt_doubling(); static int ntt_pr(); FPS inv(int deg = -1) const; FPS exp(int deg = -1) const; }; template <typename mint> void *FormalPowerSeries<mint>::ntt_ptr = nullptr; /** * @brief 多項式/形式的冪級数ライブラリ * @docs docs/fps/formal-power-series.md */ #line 5 "fps/ntt-friendly-fps.hpp" template <typename mint> void FormalPowerSeries<mint>::set_fft() { if (!ntt_ptr) ntt_ptr = new NTT<mint>; } template <typename mint> FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=( const FormalPowerSeries<mint>& r) { if (this->empty() || r.empty()) { this->clear(); return *this; } set_fft(); auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r); return *this = FormalPowerSeries<mint>(ret.begin(), ret.end()); } template <typename mint> void FormalPowerSeries<mint>::ntt() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this); } template <typename mint> void FormalPowerSeries<mint>::intt() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->intt(*this); } template <typename mint> void FormalPowerSeries<mint>::ntt_doubling() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this); } template <typename mint> int FormalPowerSeries<mint>::ntt_pr() { set_fft(); return static_cast<NTT<mint>*>(ntt_ptr)->pr; } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const { assert((*this)[0] != mint(0)); if (deg == -1) deg = (int)this->size(); FormalPowerSeries<mint> res(deg); res[0] = {mint(1) / (*this)[0]}; for (int d = 1; d < deg; d <<= 1) { FormalPowerSeries<mint> f(2 * d), g(2 * d); for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j]; for (int j = 0; j < d; j++) g[j] = res[j]; f.ntt(); g.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = 0; j < d; j++) f[j] = 0; f.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j]; } return res.pre(deg); } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const { using fps = FormalPowerSeries<mint>; assert((*this).size() == 0 || (*this)[0] == mint(0)); if (deg == -1) deg = this->size(); fps inv; inv.reserve(deg + 1); inv.push_back(mint(0)); inv.push_back(mint(1)); auto inplace_integral = [&](fps& F) -> void { const int n = (int)F.size(); auto mod = mint::get_mod(); while ((int)inv.size() <= n) { int i = inv.size(); inv.push_back((-inv[mod % i]) * (mod / i)); } F.insert(begin(F), mint(0)); for (int i = 1; i <= n; i++) F[i] *= inv[i]; }; auto inplace_diff = [](fps& F) -> void { if (F.empty()) return; F.erase(begin(F)); mint coeff = 1, one = 1; for (int i = 0; i < (int)F.size(); i++) { F[i] *= coeff; coeff += one; } }; fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1}; for (int m = 2; m < deg; m *= 2) { auto y = b; y.resize(2 * m); y.ntt(); z1 = z2; fps z(m); for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i]; z.intt(); fill(begin(z), begin(z) + m / 2, mint(0)); z.ntt(); for (int i = 0; i < m; ++i) z[i] *= -z1[i]; z.intt(); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c; z2.resize(2 * m); z2.ntt(); fps x(begin(*this), begin(*this) + min<int>(this->size(), m)); x.resize(m); inplace_diff(x); x.push_back(mint(0)); x.ntt(); for (int i = 0; i < m; ++i) x[i] *= y[i]; x.intt(); x -= b.diff(); x.resize(2 * m); for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i]; x.intt(); x.pop_back(); inplace_integral(x); for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, mint(0)); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= y[i]; x.intt(); b.insert(end(b), begin(x) + m, end(x)); } return fps{begin(b), begin(b) + deg}; } template <typename T> struct Binomial { vector<T> f, g, h; Binomial(int MAX = 0) { assert(T::get_mod() != 0 && "Binomial<mint>()"); f.resize(1, T{1}); g.resize(1, T{1}); h.resize(1, T{1}); if (MAX > 0) extend(MAX + 1); } void extend(int m = -1) { int n = f.size(); if (m == -1) m = n * 2; m = min<int>(m, T::get_mod()); if (n >= m) return; f.resize(m); g.resize(m); h.resize(m); for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i); g[m - 1] = f[m - 1].inverse(); h[m - 1] = g[m - 1] * f[m - 2]; for (int i = m - 2; i >= n; i--) { g[i] = g[i + 1] * T(i + 1); h[i] = g[i] * f[i - 1]; } } T fac(int i) { if (i < 0) return T(0); while (i >= (int)f.size()) extend(); return f[i]; } T finv(int i) { if (i < 0) return T(0); while (i >= (int)g.size()) extend(); return g[i]; } T inv(int i) { if (i < 0) return -inv(-i); while (i >= (int)h.size()) extend(); return h[i]; } T C(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r) * finv(r); } inline T operator()(int n, int r) { return C(n, r); } template <typename I> T multinomial(const vector<I>& r) { static_assert(is_integral<I>::value == true); int n = 0; for (auto& x : r) { if (x < 0) return T(0); n += x; } T res = fac(n); for (auto& x : r) res *= finv(x); return res; } template <typename I> T operator()(const vector<I>& r) { return multinomial(r); } T C_naive(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); T ret = T(1); r = min(r, n - r); for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--); return ret; } T P(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r); } // [x^r] 1 / (1-x)^n T H(int n, int r) { if (n < 0 || r < 0) return T(0); return r == 0 ? 1 : C(n + r - 1, r); } }; /** * @brief NTT mod用FPSライブラリ * @docs docs/fps/ntt-friendly-fps.md */ using mint = ModInt<MOD2>; using F = FormalPowerSeries<mint>; void solve() { INT(N, K); Binomial<mint> bi(K+2); F f(K+1); REP(i, K+1) f[i] = bi.finv(i+1); auto g = f.pow(N, K+1); cout << g[K] * bi.fac(K) / mint(N).pow(K) << endl; } int main() { int T{1}; // cin >> T; while(T--) solve(); }