結果

問題 No.2582 Random Average^K
ユーザー siro53siro53
提出日時 2023-12-10 02:34:54
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 30,292 bytes
コンパイル時間 7,688 ms
コンパイル使用メモリ 351,848 KB
実行使用メモリ 181,584 KB
最終ジャッジ日時 2024-09-27 03:56:35
合計ジャッジ時間 11,252 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,752 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 3 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 8 ms
5,376 KB
testcase_07 AC 5 ms
5,376 KB
testcase_08 AC 8 ms
5,376 KB
testcase_09 TLE -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
// input output utils
namespace siro53_io {
    // https://maspypy.github.io/library/other/io_old.hpp
    struct has_val_impl {
        template <class T>
        static auto check(T &&x) -> decltype(x.val(), std::true_type{});

        template <class T> static auto check(...) -> std::false_type;
    };

    template <class T>
    class has_val : public decltype(has_val_impl::check<T>(std::declval<T>())) {
    };

    // debug
    template <class T, enable_if_t<is_integral<T>::value, int> = 0>
    void dump(const T t) {
        cerr << t;
    }
    template <class T, enable_if_t<is_floating_point<T>::value, int> = 0>
    void dump(const T t) {
        cerr << t;
    }
    template <class T, typename enable_if<has_val<T>::value>::type * = nullptr>
    void dump(const T &t) {
        cerr << t.val();
    }
    void dump(__int128_t n) {
        if(n == 0) {
            cerr << '0';
            return;
        } else if(n < 0) {
            cerr << '-';
            n = -n;
        }
        string s;
        while(n > 0) {
            s += (char)('0' + n % 10);
            n /= 10;
        }
        reverse(s.begin(), s.end());
        cerr << s;
    }
    void dump(const string &s) { cerr << s; }
    void dump(const char *s) {
        int n = (int)strlen(s);
        for(int i = 0; i < n; i++) cerr << s[i];
    }
    template <class T1, class T2> void dump(const pair<T1, T2> &p) {
        cerr << '(';
        dump(p.first);
        cerr << ',';
        dump(p.second);
        cerr << ')';
    }
    template <class T> void dump(const vector<T> &v) {
        cerr << '{';
        for(int i = 0; i < (int)v.size(); i++) {
            dump(v[i]);
            if(i < (int)v.size() - 1) cerr << ',';
        }
        cerr << '}';
    }
    template <class T> void dump(const set<T> &s) {
        cerr << '{';
        for(auto it = s.begin(); it != s.end(); it++) {
            dump(*it);
            if(next(it) != s.end()) cerr << ',';
        }
        cerr << '}';
    }
    template <class Key, class Value> void dump(const map<Key, Value> &mp) {
        cerr << '{';
        for(auto it = mp.begin(); it != mp.end(); it++) {
            dump(*it);
            if(next(it) != mp.end()) cerr << ',';
        }
        cerr << '}';
    }
    template <class Key, class Value>
    void dump(const unordered_map<Key, Value> &mp) {
        cerr << '{';
        for(auto it = mp.begin(); it != mp.end(); it++) {
            dump(*it);
            if(next(it) != mp.end()) cerr << ',';
        }
        cerr << '}';
    }
    template <class T> void dump(const deque<T> &v) {
        cerr << '{';
        for(int i = 0; i < (int)v.size(); i++) {
            dump(v[i]);
            if(i < (int)v.size() - 1) cerr << ',';
        }
        cerr << '}';
    }
    template <class T> void dump(queue<T> q) {
        cerr << '{';
        while(!q.empty()) {
            dump(q.front());
            if((int)q.size() > 1) cerr << ',';
            q.pop();
        }
        cerr << '}';
    }

    void debug_print() { cerr << endl; }
    template <class Head, class... Tail>
    void debug_print(const Head &h, const Tail &...t) {
        dump(h);
        if(sizeof...(Tail)) dump(' ');
        debug_print(t...);
    }
    // print
    template <class T, enable_if_t<is_integral<T>::value, int> = 0>
    void print_single(const T t) {
        cout << t;
    }
    template <class T, enable_if_t<is_floating_point<T>::value, int> = 0>
    void print_single(const T t) {
        cout << t;
    }
    template <class T, typename enable_if<has_val<T>::value>::type * = nullptr>
    void print_single(const T t) {
        cout << t.val();
    }
    void print_single(__int128_t n) {
        if(n == 0) {
            cout << '0';
            return;
        } else if(n < 0) {
            cout << '-';
            n = -n;
        }
        string s;
        while(n > 0) {
            s += (char)('0' + n % 10);
            n /= 10;
        }
        reverse(s.begin(), s.end());
        cout << s;
    }
    void print_single(const string &s) { cout << s; }
    void print_single(const char *s) {
        int n = (int)strlen(s);
        for(int i = 0; i < n; i++) cout << s[i];
    }
    template <class T1, class T2> void print_single(const pair<T1, T2> &p) {
        print_single(p.first);
        cout << ' ';
        print_single(p.second);
    }
    template <class T> void print_single(const vector<T> &v) {
        for(int i = 0; i < (int)v.size(); i++) {
            print_single(v[i]);
            if(i < (int)v.size() - 1) cout << ' ';
        }
    }
    template <class T> void print_single(const set<T> &s) {
        for(auto it = s.begin(); it != s.end(); it++) {
            print_single(*it);
            if(next(it) != s.end()) cout << ' ';
        }
    }
    template <class T> void print_single(const deque<T> &v) {
        for(int i = 0; i < (int)v.size(); i++) {
            print_single(v[i]);
            if(i < (int)v.size() - 1) cout << ' ';
        }
    }
    template <class T> void print_single(queue<T> q) {
        while(!q.empty()) {
            print_single(q.front());
            if((int)q.size() > 1) cout << ' ';
            q.pop();
        }
    }

    void print() { cout << '\n'; }
    template <class Head, class... Tail>
    void print(const Head &h, const Tail &...t) {
        print_single(h);
        if(sizeof...(Tail)) print_single(' ');
        print(t...);
    }

    // input
    template <class T, enable_if_t<is_integral<T>::value, int> = 0>
    void input_single(T &t) {
        cin >> t;
    }
    template <class T, enable_if_t<is_floating_point<T>::value, int> = 0>
    void input_single(T &t) {
        cin >> t;
    }
    template <class T, typename enable_if<has_val<T>::value>::type * = nullptr>
    void input_single(T &t) {
        cin >> t;
    }
    void input_single(__int128_t &n) {
        string s;
        cin >> s;
        if(s == "0") {
            n = 0;
            return;
        }
        bool is_minus = false;
        if(s[0] == '-') {
            s = s.substr(1);
            is_minus = true;
        }
        n = 0;
        for(int i = 0; i < (int)s.size(); i++) n = n * 10 + (int)(s[i] - '0');
        if(is_minus) n = -n;
    }
    void input_single(string &s) { cin >> s; }
    template <class T1, class T2> void input_single(pair<T1, T2> &p) {
        input_single(p.first);
        input_single(p.second);
    }
    template <class T> void input_single(vector<T> &v) {
        for(auto &e : v) input_single(e);
    }
    void input() {}
    template <class Head, class... Tail> void input(Head &h, Tail &...t) {
        input_single(h);
        input(t...);
    }
}; // namespace siro53_io
#ifdef DEBUG
#define debug(...)                                                             \
    cerr << __LINE__ << " [" << #__VA_ARGS__ << "]: ", debug_print(__VA_ARGS__)
#else
#define debug(...) (void(0))
#endif
// io setup
struct Setup {
    Setup() {
        cin.tie(0);
        ios::sync_with_stdio(false);
        cout << fixed << setprecision(15);
    }
} __Setup;
using namespace siro53_io;
// types
using ll = long long;
using i128 = __int128_t;
// input macros
#define INT(...)                                                               \
    int __VA_ARGS__;                                                           \
    input(__VA_ARGS__)
#define LL(...)                                                                \
    ll __VA_ARGS__;                                                            \
    input(__VA_ARGS__)
#define STRING(...)                                                            \
    string __VA_ARGS__;                                                        \
    input(__VA_ARGS__)
#define CHAR(...)                                                              \
    char __VA_ARGS__;                                                          \
    input(__VA_ARGS__)
#define DBL(...)                                                               \
    double __VA_ARGS__;                                                        \
    input(__VA_ARGS__)
#define LD(...)                                                                \
    long double __VA_ARGS__;                                                   \
    input(__VA_ARGS__)
#define UINT(...)                                                              \
    unsigned int __VA_ARGS__;                                                  \
    input(__VA_ARGS__)
#define ULL(...)                                                               \
    unsigned long long __VA_ARGS__;                                            \
    input(__VA_ARGS__)
#define VEC(name, type, len)                                                   \
    vector<type> name(len);                                                    \
    input(name);
#define VEC2(name, type, len1, len2)                                           \
    vector name(len1, vector<type>(len2));                                     \
    input(name);
// other macros
// https://trap.jp/post/1224/
#define OVERLOAD3(_1, _2, _3, name, ...) name
#define ALL(v) (v).begin(), (v).end()
#define RALL(v) (v).rbegin(), (v).rend()
#define REP1(i, n) for(int i = 0; i < int(n); i++)
#define REP2(i, a, b) for(int i = (a); i < int(b); i++)
#define REP(...) OVERLOAD3(__VA_ARGS__, REP2, REP1)(__VA_ARGS__)
#define SORT(v) sort(ALL(v))
#define RSORT(v) sort(RALL(v))
#define UNIQUE(v)                                                              \
    sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end()), v.shrink_to_fit()
#define REV(v) reverse(ALL(v))
#define SZ(v) ((int)(v).size())
#define MIN(v) (*min_element(ALL(v)))
#define MAX(v) (*max_element(ALL(v)))
// util const
const int INF = 1 << 30;
const ll LLINF = 1LL << 60;
constexpr int MOD = 1000000007;
constexpr int MOD2 = 998244353;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};
// util functions
void Case(int i) { cout << "Case #" << i << ": "; }
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
template <class T> inline bool chmax(T &a, T b) {
    return (a < b ? a = b, true : false);
}
template <class T> inline bool chmin(T &a, T b) {
    return (a > b ? a = b, true : false);
}
template <class T, size_t dim>
auto make_vector_impl(vector<size_t>& sizes, const T &e) {
    if constexpr(dim == 1) {
        return vector(sizes[0], e);
    } else {
        size_t n = sizes[dim - 1];
        sizes.pop_back();
        return vector(n, make_vector_impl<T, dim - 1>(sizes, e));
    }
}
template <class T, size_t dim>
auto make_vector(const size_t (&sizes)[dim], const T &e) {
    vector<size_t> s(dim);
    for(size_t i = 0; i < dim; i++) s[i] = sizes[dim - i - 1];
    return make_vector_impl<T, dim>(s, e);
}
#pragma endregion Macros

// https://nyaannyaan.github.io/library/ から借りた

#line 2 "modint/modint.hpp"

template <int mod>
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if ((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if ((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int)(1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }
  ModInt operator+() const { return ModInt(*this); }

  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt<mod>(t);
    return (is);
  }

  int get() const { return x; }

  static constexpr int get_mod() { return mod; }
};

/**
 * @brief modint
 */

#line 2 "fps/ntt-friendly-fps.hpp"

#line 2 "ntt/ntt.hpp"

template <typename mint>
struct NTT {
  static constexpr uint32_t get_pr() {
    uint32_t _mod = mint::get_mod();
    using u64 = uint64_t;
    u64 ds[32] = {};
    int idx = 0;
    u64 m = _mod - 1;
    for (u64 i = 2; i * i <= m; ++i) {
      if (m % i == 0) {
        ds[idx++] = i;
        while (m % i == 0) m /= i;
      }
    }
    if (m != 1) ds[idx++] = m;

    uint32_t _pr = 2;
    while (1) {
      int flg = 1;
      for (int i = 0; i < idx; ++i) {
        u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
        while (b) {
          if (b & 1) r = r * a % _mod;
          a = a * a % _mod;
          b >>= 1;
        }
        if (r == 1) {
          flg = 0;
          break;
        }
      }
      if (flg == 1) break;
      ++_pr;
    }
    return _pr;
  };

  static constexpr uint32_t mod = mint::get_mod();
  static constexpr uint32_t pr = get_pr();
  static constexpr int level = __builtin_ctzll(mod - 1);
  mint dw[level], dy[level];

  void setwy(int k) {
    mint w[level], y[level];
    w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
    y[k - 1] = w[k - 1].inverse();
    for (int i = k - 2; i > 0; --i)
      w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
    dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
    for (int i = 3; i < k; ++i) {
      dw[i] = dw[i - 1] * y[i - 2] * w[i];
      dy[i] = dy[i - 1] * w[i - 2] * y[i];
    }
  }

  NTT() { setwy(level); }

  void fft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    if (k & 1) {
      int v = 1 << (k - 1);
      for (int j = 0; j < v; ++j) {
        mint ajv = a[j + v];
        a[j + v] = a[j] - ajv;
        a[j] += ajv;
      }
    }
    int u = 1 << (2 + (k & 1));
    int v = 1 << (k - 2 - (k & 1));
    mint one = mint(1);
    mint imag = dw[1];
    while (v) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = j1 + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dw[2], wx = one;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, wx = ww * xx;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
               t3 = a[j2 + v] * wx;
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
        }
        xx *= dw[__builtin_ctzll((jh += 4))];
      }
      u <<= 2;
      v >>= 2;
    }
  }

  void ifft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    int u = 1 << (k - 2);
    int v = 1;
    mint one = mint(1);
    mint imag = dy[1];
    while (u) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = v + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
          a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
          a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dy[2], yy = one;
      u <<= 2;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, yy = xx * imag;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
          a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
          a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
        }
        xx *= dy[__builtin_ctzll(jh += 4)];
      }
      u >>= 4;
      v <<= 2;
    }
    if (k & 1) {
      u = 1 << (k - 1);
      for (int j = 0; j < u; ++j) {
        mint ajv = a[j] - a[j + u];
        a[j] += a[j + u];
        a[j + u] = ajv;
      }
    }
  }

  void ntt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    fft4(a, __builtin_ctz(a.size()));
  }

  void intt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    ifft4(a, __builtin_ctz(a.size()));
    mint iv = mint(a.size()).inverse();
    for (auto &x : a) x *= iv;
  }

  vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
    int l = a.size() + b.size() - 1;
    if (min<int>(a.size(), b.size()) <= 40) {
      vector<mint> s(l);
      for (int i = 0; i < (int)a.size(); ++i)
        for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
      return s;
    }
    int k = 2, M = 4;
    while (M < l) M <<= 1, ++k;
    setwy(k);
    vector<mint> s(M);
    for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
    fft4(s, k);
    if (a.size() == b.size() && a == b) {
      for (int i = 0; i < M; ++i) s[i] *= s[i];
    } else {
      vector<mint> t(M);
      for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
      fft4(t, k);
      for (int i = 0; i < M; ++i) s[i] *= t[i];
    }
    ifft4(s, k);
    s.resize(l);
    mint invm = mint(M).inverse();
    for (int i = 0; i < l; ++i) s[i] *= invm;
    return s;
  }

  void ntt_doubling(vector<mint> &a) {
    int M = (int)a.size();
    auto b = a;
    intt(b);
    mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
    for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;
    ntt(b);
    copy(begin(b), end(b), back_inserter(a));
  }
};
#line 2 "fps/formal-power-series.hpp"

template <typename mint>
struct FormalPowerSeries : vector<mint> {
  using vector<mint>::vector;
  using FPS = FormalPowerSeries;

  FPS &operator+=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
    return *this;
  }

  FPS &operator+=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
  }

  FPS &operator-=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
    return *this;
  }

  FPS &operator-=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] -= r;
    return *this;
  }

  FPS &operator*=(const mint &v) {
    for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
    return *this;
  }

  FPS &operator/=(const FPS &r) {
    if (this->size() < r.size()) {
      this->clear();
      return *this;
    }
    int n = this->size() - r.size() + 1;
    if ((int)r.size() <= 64) {
      FPS f(*this), g(r);
      g.shrink();
      mint coeff = g.back().inverse();
      for (auto &x : g) x *= coeff;
      int deg = (int)f.size() - (int)g.size() + 1;
      int gs = g.size();
      FPS quo(deg);
      for (int i = deg - 1; i >= 0; i--) {
        quo[i] = f[i + gs - 1];
        for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
      }
      *this = quo * coeff;
      this->resize(n, mint(0));
      return *this;
    }
    return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
  }

  FPS &operator%=(const FPS &r) {
    *this -= *this / r * r;
    shrink();
    return *this;
  }

  FPS operator+(const FPS &r) const { return FPS(*this) += r; }
  FPS operator+(const mint &v) const { return FPS(*this) += v; }
  FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
  FPS operator-(const mint &v) const { return FPS(*this) -= v; }
  FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
  FPS operator*(const mint &v) const { return FPS(*this) *= v; }
  FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
  FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
  FPS operator-() const {
    FPS ret(this->size());
    for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
    return ret;
  }

  void shrink() {
    while (this->size() && this->back() == mint(0)) this->pop_back();
  }

  FPS rev() const {
    FPS ret(*this);
    reverse(begin(ret), end(ret));
    return ret;
  }

  FPS dot(FPS r) const {
    FPS ret(min(this->size(), r.size()));
    for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
    return ret;
  }

  // 前 sz 項を取ってくる。sz に足りない項は 0 埋めする
  FPS pre(int sz) const {
    FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
    if ((int)ret.size() < sz) ret.resize(sz);
    return ret;
  }

  FPS operator>>(int sz) const {
    if ((int)this->size() <= sz) return {};
    FPS ret(*this);
    ret.erase(ret.begin(), ret.begin() + sz);
    return ret;
  }

  FPS operator<<(int sz) const {
    FPS ret(*this);
    ret.insert(ret.begin(), sz, mint(0));
    return ret;
  }

  FPS diff() const {
    const int n = (int)this->size();
    FPS ret(max(0, n - 1));
    mint one(1), coeff(1);
    for (int i = 1; i < n; i++) {
      ret[i - 1] = (*this)[i] * coeff;
      coeff += one;
    }
    return ret;
  }

  FPS integral() const {
    const int n = (int)this->size();
    FPS ret(n + 1);
    ret[0] = mint(0);
    if (n > 0) ret[1] = mint(1);
    auto mod = mint::get_mod();
    for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
    for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
    return ret;
  }

  mint eval(mint x) const {
    mint r = 0, w = 1;
    for (auto &v : *this) r += w * v, w *= x;
    return r;
  }

  FPS log(int deg = -1) const {
    assert(!(*this).empty() && (*this)[0] == mint(1));
    if (deg == -1) deg = (int)this->size();
    return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
  }

  FPS pow(int64_t k, int deg = -1) const {
    const int n = (int)this->size();
    if (deg == -1) deg = n;
    if (k == 0) {
      FPS ret(deg);
      if (deg) ret[0] = 1;
      return ret;
    }
    for (int i = 0; i < n; i++) {
      if ((*this)[i] != mint(0)) {
        mint rev = mint(1) / (*this)[i];
        FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
        ret *= (*this)[i].pow(k);
        ret = (ret << (i * k)).pre(deg);
        if ((int)ret.size() < deg) ret.resize(deg, mint(0));
        return ret;
      }
      if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
    }
    return FPS(deg, mint(0));
  }

  static void *ntt_ptr;
  static void set_fft();
  FPS &operator*=(const FPS &r);
  void ntt();
  void intt();
  void ntt_doubling();
  static int ntt_pr();
  FPS inv(int deg = -1) const;
  FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;

/**
 * @brief 多項式/形式的冪級数ライブラリ
 * @docs docs/fps/formal-power-series.md
 */
#line 5 "fps/ntt-friendly-fps.hpp"

template <typename mint>
void FormalPowerSeries<mint>::set_fft() {
  if (!ntt_ptr) ntt_ptr = new NTT<mint>;
}

template <typename mint>
FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=(
    const FormalPowerSeries<mint>& r) {
  if (this->empty() || r.empty()) {
    this->clear();
    return *this;
  }
  set_fft();
  auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r);
  return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());
}

template <typename mint>
void FormalPowerSeries<mint>::ntt() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::intt() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->intt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::ntt_doubling() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this);
}

template <typename mint>
int FormalPowerSeries<mint>::ntt_pr() {
  set_fft();
  return static_cast<NTT<mint>*>(ntt_ptr)->pr;
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
  assert((*this)[0] != mint(0));
  if (deg == -1) deg = (int)this->size();
  FormalPowerSeries<mint> res(deg);
  res[0] = {mint(1) / (*this)[0]};
  for (int d = 1; d < deg; d <<= 1) {
    FormalPowerSeries<mint> f(2 * d), g(2 * d);
    for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j];
    for (int j = 0; j < d; j++) g[j] = res[j];
    f.ntt();
    g.ntt();
    for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
    f.intt();
    for (int j = 0; j < d; j++) f[j] = 0;
    f.ntt();
    for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
    f.intt();
    for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];
  }
  return res.pre(deg);
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
  using fps = FormalPowerSeries<mint>;
  assert((*this).size() == 0 || (*this)[0] == mint(0));
  if (deg == -1) deg = this->size();

  fps inv;
  inv.reserve(deg + 1);
  inv.push_back(mint(0));
  inv.push_back(mint(1));

  auto inplace_integral = [&](fps& F) -> void {
    const int n = (int)F.size();
    auto mod = mint::get_mod();
    while ((int)inv.size() <= n) {
      int i = inv.size();
      inv.push_back((-inv[mod % i]) * (mod / i));
    }
    F.insert(begin(F), mint(0));
    for (int i = 1; i <= n; i++) F[i] *= inv[i];
  };

  auto inplace_diff = [](fps& F) -> void {
    if (F.empty()) return;
    F.erase(begin(F));
    mint coeff = 1, one = 1;
    for (int i = 0; i < (int)F.size(); i++) {
      F[i] *= coeff;
      coeff += one;
    }
  };

  fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
  for (int m = 2; m < deg; m *= 2) {
    auto y = b;
    y.resize(2 * m);
    y.ntt();
    z1 = z2;
    fps z(m);
    for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
    z.intt();
    fill(begin(z), begin(z) + m / 2, mint(0));
    z.ntt();
    for (int i = 0; i < m; ++i) z[i] *= -z1[i];
    z.intt();
    c.insert(end(c), begin(z) + m / 2, end(z));
    z2 = c;
    z2.resize(2 * m);
    z2.ntt();
    fps x(begin(*this), begin(*this) + min<int>(this->size(), m));
    x.resize(m);
    inplace_diff(x);
    x.push_back(mint(0));
    x.ntt();
    for (int i = 0; i < m; ++i) x[i] *= y[i];
    x.intt();
    x -= b.diff();
    x.resize(2 * m);
    for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0);
    x.ntt();
    for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
    x.intt();
    x.pop_back();
    inplace_integral(x);
    for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i];
    fill(begin(x), begin(x) + m, mint(0));
    x.ntt();
    for (int i = 0; i < 2 * m; ++i) x[i] *= y[i];
    x.intt();
    b.insert(end(b), begin(x) + m, end(x));
  }
  return fps{begin(b), begin(b) + deg};
}

template <typename T>
struct Binomial {
  vector<T> f, g, h;
  Binomial(int MAX = 0) {
    assert(T::get_mod() != 0 && "Binomial<mint>()");
    f.resize(1, T{1});
    g.resize(1, T{1});
    h.resize(1, T{1});
    if (MAX > 0) extend(MAX + 1);
  }

  void extend(int m = -1) {
    int n = f.size();
    if (m == -1) m = n * 2;
    m = min<int>(m, T::get_mod());
    if (n >= m) return;
    f.resize(m);
    g.resize(m);
    h.resize(m);
    for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
    g[m - 1] = f[m - 1].inverse();
    h[m - 1] = g[m - 1] * f[m - 2];
    for (int i = m - 2; i >= n; i--) {
      g[i] = g[i + 1] * T(i + 1);
      h[i] = g[i] * f[i - 1];
    }
  }

  T fac(int i) {
    if (i < 0) return T(0);
    while (i >= (int)f.size()) extend();
    return f[i];
  }

  T finv(int i) {
    if (i < 0) return T(0);
    while (i >= (int)g.size()) extend();
    return g[i];
  }

  T inv(int i) {
    if (i < 0) return -inv(-i);
    while (i >= (int)h.size()) extend();
    return h[i];
  }

  T C(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r) * finv(r);
  }

  inline T operator()(int n, int r) { return C(n, r); }

  template <typename I>
  T multinomial(const vector<I>& r) {
    static_assert(is_integral<I>::value == true);
    int n = 0;
    for (auto& x : r) {
      if (x < 0) return T(0);
      n += x;
    }
    T res = fac(n);
    for (auto& x : r) res *= finv(x);
    return res;
  }

  template <typename I>
  T operator()(const vector<I>& r) {
    return multinomial(r);
  }

  T C_naive(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    T ret = T(1);
    r = min(r, n - r);
    for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
    return ret;
  }

  T P(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r);
  }

  // [x^r] 1 / (1-x)^n
  T H(int n, int r) {
    if (n < 0 || r < 0) return T(0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};

/**
 * @brief NTT mod用FPSライブラリ
 * @docs docs/fps/ntt-friendly-fps.md
 */
using mint = ModInt<MOD2>;
using F = FormalPowerSeries<mint>;

void solve() {
    INT(N, K);
    Binomial<mint> bi(K+2);

    F f(K+1);
    REP(i, K+1) f[i] = bi.finv(i+1);
    auto g = f.pow(N, K+1);
    cout << g[K] * bi.fac(K) / mint(N).pow(K) << endl;
}

int main() {
    int T{1};
    // cin >> T;
    while(T--) solve();
}
0