結果

問題 No.2582 Random Average^K
ユーザー 👑 p-adicp-adic
提出日時 2023-12-10 15:48:54
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 130 ms / 2,000 ms
コード長 26,687 bytes
コンパイル時間 3,373 ms
コンパイル使用メモリ 227,392 KB
実行使用メモリ 34,668 KB
最終ジャッジ日時 2024-09-27 04:07:32
合計ジャッジ時間 5,090 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 24 ms
26,880 KB
testcase_01 AC 23 ms
26,848 KB
testcase_02 AC 23 ms
26,752 KB
testcase_03 AC 24 ms
26,752 KB
testcase_04 AC 23 ms
26,880 KB
testcase_05 AC 24 ms
26,752 KB
testcase_06 AC 24 ms
26,880 KB
testcase_07 AC 23 ms
26,880 KB
testcase_08 AC 25 ms
26,880 KB
testcase_09 AC 52 ms
29,056 KB
testcase_10 AC 71 ms
30,208 KB
testcase_11 AC 69 ms
30,208 KB
testcase_12 AC 127 ms
34,560 KB
testcase_13 AC 115 ms
34,668 KB
testcase_14 AC 23 ms
26,880 KB
testcase_15 AC 130 ms
34,668 KB
testcase_16 AC 77 ms
30,976 KB
testcase_17 AC 79 ms
30,848 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifdef INCLUDE_MAIN

inline void Solve()
{
  DEXPR( ll , bound , 1000000 , 123 );
  CIN( ll , N , K );
  CEXPR( ll , P , 998244353 );
  MahlerTransform<bound+1> mt{ P };
  ll f[bound+1];
  FOREQ( i , 0 , N ){
    POWER_MOD( power , i , K + N , P );
    f[i] = power;
  }
  POWER_MOD( answer , N , K * ( P - 2 ) % ( P - 1 ) , P );
  ll prod = 1;
  FOREQ( i , 1 , N ){
    ( prod *= K + i ) %= P;
  }
  POWER_MOD( prod_inv , prod , P - 2 , P );
  RETURN( answer * mt.InclusionExclusionPrinciple( f , N ) % P * prod_inv % P );
}
REPEAT_MAIN(1);

#else // INCLUDE_MAIN

#ifdef INCLUDE_SUB

template <typename PATH> list<PATH> E( const int& i )
{
  // list<PATH> answer{};
  list<PATH> answer = e<PATH>[i];
  // VVV 入力によらない処理は以下に挿入する。

  // AAA 入力によらない処理は以上に挿入する。
  return answer;
}

template <typename T> inline T F( const T& t ){ return f<T>[t]; }
template <typename T> inline T G( const int& i ){ return g<T>[i]; }

ll Naive( int N , int M , int K )
{
  ll answer = N + M + K;
  return answer;
}

ll Answer( ll N , ll M , ll K )
{
  // START_WATCH;
  ll answer = N + M + K;

  // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。
  // CEXPR( double , TL , 2000.0 );
  // while( CHECK_WATCH( TL ) ){

  // }
  return answer;
}

inline void Experiment()
{
  // CEXPR( int , bound , 10 );
  // FOREQ( N , 0 , bound ){
  //   FOREQ( M , 0 , bound ){
  //     FOREQ( K , 0 , bound ){
  //   	COUT( N , M , K , ":" , Naive( N , M , K ) );
  //     }
  //   }
  //   // cout << Naive( N ) << ",\n"[N==bound];
  // }
}

inline void SmallTest()
{
  // CEXPR( int , bound , 10 );
  // FOREQ( N , 0 , bound ){
  //   FOREQ( M , 0 , bound ){
  //     FOREQ( K , 0 , bound ){
  //   	COMPARE( N , M , K );
  //     }
  //   }
  //   // COMPARE( N );
  // }
}

#define INCLUDE_MAIN
#include __FILE__

#else // INCLUDE_SUB

#ifdef INCLUDE_LIBRARY

/*

C-x 3 C-x o C-x C-fによるファイル操作用

BFS:
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt

CoordinateCompress:
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt

DFSOnTree
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp

Divisor:
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt

Polynomial
c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt

UnionFind
c:/Users/user/Documents/Programming/Utility/VLTree/UnionFindForest/compress.txt

*/

// VVV 常設でないライブラリは以下に挿入する。

// N_max > 0の場合のみサポート。
template <int N_max>
class MahlerTransform
{
private:
  const int m_p;
  ll m_fact[N_max];
  ll m_fact_inv[N_max];
  ll m_inv[N_max];

public:
  // pがN_max以上の素数である場合のみサポート。
  // O(N_max)で前計算値を格納する。
  inline MahlerTransform( const int& p );

  // 0 <= i_start <= i_final < N_maxの場合のみサポート。
  // O((i_final-i_start)^2)で(f[i_start],...,f[i_final])のマーラー変換を法pで計算し
  // (a[i_start],...,a[i_final])に格納する。
  // 要素数のみに依存する包除原理を法pで解くことに対応。
  // f=(要素数iの集合の部分集合をわたる総和)_{i=0}^{n}から
  // a=(要素数iの集合の値)_{i=0}^{n}を(i_start,i_final)=(0,n)とすれば計算可能。
  void Convert( const ll ( &f )[N_max] , ll ( &a )[N_max] , const int& i_start , const int& i_final );
  // ↑はO(n^2)かかるので、1つのa[i]が欲しいだけの場合はO(i)の↓の通常の包除計算を用いる。
  ll InclusionExclusionPrinciple( const ll ( &f )[N_max] , const int& i );

  // 0 <= i_start <= i_final < N_maxの場合のみサポート。
  // O((i_final-i_start)^2)で(a[i_start],...,a[i_final])の逆マーラー変換を法pで計算し
  // (f[i_start],...,f[i_final])に格納する。
  // 要素数のみに依存するゼータ変換を法pで計算することに対応。
  // (要素数iの集合の値)_{i=0}^{n}から
  // (要素数iの集合の部分集合をわたる総和)_{i=0}^{n}を(i_start,i_final)=(0,n)とすれば計算可能。
  void InverseConvert( const ll ( &a )[N_max] , ll ( &f )[N_max] , const int& i_start , const int& i_final );

  // 0 <= n < N_maxである場合のみサポート。
  // 前計算された値をO(1)で参照する。
  inline ll Combination( const int& n , const int& i ) const;
  inline const ll& Factorial( const int& n ) const;
  inline const ll& FactorialInverse( const int& n ) const;
  // 0 < n < N_maxである場合のみサポート。
  inline const ll& Inverse( const int& n ) const;

};

template <int N_max> inline MahlerTransform<N_max>::MahlerTransform( const int& p ) : m_p( p ) , m_fact() , m_fact_inv() , m_inv()
{
  
  static_assert( 0 < N_max );
  assert( N_max <= m_p );
  m_fact[0] = m_fact_inv[0] = m_fact[1] = m_fact_inv[1] = m_inv[1] = 1;
  ll fact_temp = 1;
  ll fact_inv_temp = 1;
  
  for( int i = 2 ; i < N_max ; i++ ){

    m_fact[i] = ( fact_temp *= i ) %= m_p;
    m_fact_inv[i] = ( fact_inv_temp *= m_inv[i] = m_p - m_inv[m_p % i] * ( m_p / i ) % m_p ) %= m_p;
    
  }

}

template <int N_max> void MahlerTransform<N_max>::Convert( const ll ( &f )[N_max] , ll ( &a )[N_max] , const int& i_start , const int& i_final )
{

  assert( 0 <= i_start && i_start <= i_final && i_final < N_max );
  
  for( int i = i_start ; i <= i_final ; i++ ){

    a[i] = f[i];

  }
  
  for( int j = i_start + 1; j <= i_final ; j++ ){

    for( int i = i_final ; i >= j ; i-- ){

      ll& a_i = a[i] -= a[i - 1];
      a_i < 0 ? a_i += m_p : a_i;

    }

  }

  return;

}

template <int N_max> ll MahlerTransform<N_max>::InclusionExclusionPrinciple( const ll ( &f )[N_max] , const int& i )
{

  assert( 0 <= i && i < N_max );
  ll answer = 0;
  
  for( int j = 0 ; j <= i ; j++ ){

    answer += f[j] % m_p * m_fact_inv[j] % m_p * m_fact_inv[i-j] % m_p * ( ( ( i - j ) & 1 ) == 0 ? 1 : -1 );

  }

  return move( ( ( ( answer %= m_p ) *= m_fact[i] ) %= m_p ) < 0 ? answer += m_p : answer );

}

template <int N_max> void MahlerTransform<N_max>::InverseConvert( const ll ( &a )[N_max] , ll ( &f )[N_max] , const int& i_start , const int& i_final )
{

  assert( 0 <= i_start && i_start <= i_final && i_final < N_max );
  
  for( int i = i_start ; i <= i_final ; i++ ){

    ll& f_i = f[i] = 0;

    for( int j = i_start ; j <= i ; j++ ){

      ( f_i += m_fact[i - i_start] * m_fact_inv[j - i_start] % m_p * m_fact_inv[i - j] % m_p * a[j] % m_p ) < m_p ? f_i : f_i -= m_p;

    }

  }
  
  return;

}

template <int N_max> inline ll MahlerTransform<N_max>::Combination( const int& n , const int& i ) const { assert( 0 <= n && n < N_max && 0 <= i ); return n < i ? 0 : m_fact[n] * m_fact_inv[i] % m_p * m_fact_inv[n-i] % m_p; }
template <int N_max> inline const ll& MahlerTransform<N_max>::Factorial( const int& n ) const { assert( 0 <= n && n < N_max ); return m_fact[n]; }
template <int N_max> inline const ll& MahlerTransform<N_max>::FactorialInverse( const int& n ) const { assert( 0 <= n && n < N_max ); return m_fact_inv[n]; }
template <int N_max> inline const ll& MahlerTransform<N_max>::Inverse( const int& n ) const { assert( 0 < n && n < N_max ); return m_inv[n]; }

// AAA 常設でないライブラリは以上に挿入する。

#define INCLUDE_SUB
#include __FILE__

#else // INCLUDE_LIBRARY

// #define REACTIVE
// #define USE_GETLINE
#ifdef DEBUG
  #define _GLIBCXX_DEBUG
#define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); if( exec_mode == sample_debug_mode || exec_mode == submission_debug_mode || exec_mode == library_search_mode ){ return 0; } else if( exec_mode == experiment_mode ){ Experiment(); return 0; } else if( exec_mode == small_test_mode ){ SmallTest(); return 0; }; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int test_case_num = 1; if( exec_mode == solve_mode ){ if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); SET_LL( test_case_num ); } FINISH_MAIN
  #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
  #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
  #define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { assert( false ); }
  #define SOLVE_ONLY static_assert( __FUNCTION__[0] == 'S' )
  #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
  #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl
  #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl
  #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl
  #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl
  #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl
#else
  #pragma GCC optimize ( "O3" )
  #pragma GCC optimize ( "unroll-loops" )
  #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
  #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN
  #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
  #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
  #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX )
  #define SOLVE_ONLY 
  #define CERR( ... ) 
  #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL
  #define CERR_A( A , N ) 
  #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL
  #define CERR_ITR( A ) 
  #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL
#endif
#ifdef REACTIVE
  #define ENDL endl
#else
  #define ENDL "\n"
#endif
#ifdef USE_GETLINE
  #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); }
  #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
  #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
#else
  #define SET_LL( A ) cin >> A
  #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )
  #define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; }
  #define CIN_A( LL , A , N ) vector<LL> A( N ); SET_A( A , N );
#endif
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using lld = __float128;
template <typename INT> using T2 = pair<INT,INT>;
template <typename INT> using T3 = tuple<INT,INT,INT>;
template <typename INT> using T4 = tuple<INT,INT,INT,INT>;
using path = pair<int,ll>;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define FINISH_MAIN REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } }
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()
#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS
#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS
#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); return
#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( #__VA_ARGS__ , ":" , naive , match ? "==" : "!=" , answer ); if( !match ){ return; }

// 入出力用
template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg , ARGS&... args ) { return VariadicCin( is >> arg , args... ); }
template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }
template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg& arg ) { return os << arg; }
template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); }

// 算術用
template <typename T> constexpr T PositiveBaseResidue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }
template <typename T> constexpr T Residue( const T& a , const T& p ){ return PositiveBaseResidue( a , p < 0 ? -p : p ); }
template <typename T> constexpr T PositiveBaseQuotient( const T& a , const T& p ){ return ( a - PositiveBaseResidue( a , p ) ) / p; }
template <typename T> constexpr T Quotient( const T& a , const T& p ){ return p < 0 ? PositiveBaseQuotient( -a , -p ) : PositiveBaseQuotient( a , p ); }

#define POWER( ANSWER , ARGUMENT , EXPONENT )				\
  static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \
  TYPE_OF( ARGUMENT ) ANSWER{ 1 };					\
  {									\
    TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT );	\
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;			\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;	\
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\

#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO )		\
  ll ANSWER{ 1 };							\
  {									\
    ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \
    ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\

#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \
  ll ANSWER[CONSTEXPR_LENGTH];						\
  ll ANSWER_INV[CONSTEXPR_LENGTH];					\
  ll INVERSE[CONSTEXPR_LENGTH];						\
  {									\
    ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1;				\
    ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL;			\
    FOREQ( i , 1 , MAX_INDEX ){						\
      ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
    }									\
    ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
    FOREQ( i , 2 , MAX_INDEX ){						\
      ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \
    }									\
  }									\

// 二分探索用
// EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CONST_TARGETの整数解を格納。
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CONST_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
  static_assert( ! is_same<TYPE_OF( CONST_TARGET ),uint>::value && ! is_same<TYPE_OF( CONST_TARGET ),ull>::value ); \
  ll ANSWER = MINIMUM;							\
  {									\
  ll L_BS = MINIMUM;							\
  ll U_BS = MAXIMUM;							\
  ANSWER = UPDATE_ANSWER;						\
  ll EXPRESSION_BS;							\
  const ll CONST_TARGET_BS = ( CONST_TARGET );				\
  ll DIFFERENCE_BS;							\
  while( L_BS < U_BS ){							\
    DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CONST_TARGET_BS; \
    CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "-" , #CONST_TARGET , "=" , EXPRESSION_BS , "-" , CONST_TARGET_BS , "=" , DIFFERENCE_BS ); \
    if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){				\
      U_BS = UPDATE_U;							\
    } else {								\
      L_BS = UPDATE_L;							\
    }									\
    ANSWER = UPDATE_ANSWER;						\
  }									\
  if( L_BS > U_BS ){							\
    CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1  ); \
    CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" );	\
    ANSWER = MAXIMUM + 1;						\
  } else {								\
    CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , ANSWER , "<=" , U_BS , "= U_BS" ); \
    CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \
    CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" );	\
    EXPRESSION_BS = ( EXPRESSION );					\
    CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CONST_TARGET_BS ? ">" : EXPRESSION_BS < CONST_TARGET_BS ? "<" : "=" ) , CONST_TARGET_BS ); \
    if( EXPRESSION_BS DESIRED_INEQUALITY CONST_TARGET_BS ){		\
      CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER );		\
    } else {								\
      CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \
      CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \
      ANSWER = MAXIMUM + 1;						\
    }									\
  }									\
  }									\

// 単調増加の時にEXPRESSION >= CONST_TARGETの最小解を格納。
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET )	\
  BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) \

// 単調増加の時にEXPRESSION <= CONST_TARGETの最大解を格納。
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET )	\
  BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) \

// 単調減少の時にEXPRESSION >= CONST_TARGETの最大解を格納。
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET )	\
  BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) \

// 単調減少の時にEXPRESSION <= CONST_TARGETの最小解を格納。
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET )	\
  BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) \

// t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。
template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。
template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。
template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); }
// tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。
template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); }

// データ構造用
template <typename T> inline T Add( const T& t0 , const T& t1 ) { return t0 + t1; }
template <typename T> inline T XorAdd( const T& t0 , const T& t1 ){ return t0 ^ t1; }
template <typename T> inline T Multiply( const T& t0 , const T& t1 ) { return t0 * t1; }
template <typename T> inline const T& Zero() { static const T z = 0; return z; }
template <typename T> inline const T& One() { static const T o = 1; return o; }\
template <typename T> inline T AddInv( const T& t ) { return -t; }
template <typename T> inline T Id( const T& v ) { return v; }
template <typename T> inline T Min( const T& a , const T& b ){ return a < b ? a : b; }
template <typename T> inline T Max( const T& a , const T& b ){ return a < b ? b : a; }

// グリッド問題用
int H , W , H_minus , W_minus , HW;
vector<vector<bool> > non_wall;
inline T2<int> EnumHW( const int& v ) { return { v / W , v % W }; }
inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; }
const string direction[4] = {"U","R","D","L"};
// (i,j)->(k,h)の方向番号を取得
inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);}
// v->wの方向番号を取得
inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);}
// 方向番号の反転U<->D、R<->L
inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;}
inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v);}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back(v);}}}}
inline void SetEdgeOnGrid( const string& Si , const int& i , list<path> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){const int v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}}
inline void SetWallOnGrid( const string& Si , const int& i , vector<vector<bool> >& non_wall , const char& walkable = '.'  , const char& unwalkable = '#' ){non_wall.push_back(vector<bool>(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}}

// グラフ用
template <typename PATH> vector<list<PATH> > e;
template <typename T> map<T,T> f;
template <typename T> vector<T> g;

// デバッグ用
#ifdef DEBUG
  inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }
  void AutoCheck( int& exec_mode , const bool& use_getline );
  inline void Solve();
  inline void Experiment();
  inline void SmallTest();
  inline void RandomTest();
  ll GetRand( const ll& Rand_min , const ll& Rand_max );
  int exec_mode;
  CEXPR( int , solve_mode , 0 );
  CEXPR( int , sample_debug_mode , 1 );
  CEXPR( int , submission_debug_mode , 2 );
  CEXPR( int , library_search_mode , 3 );
  CEXPR( int , experiment_mode , 4 );
  CEXPR( int , small_test_mode , 5 );
  CEXPR( int , random_test_mode , 6 );
  #ifdef USE_GETLINE
    CEXPR( bool , use_getline , true );
  #else
    CEXPR( bool , use_getline , false );
  #endif
#else
  ll GetRand( const ll& , const ll& ) { abort(); return 0; }
#endif

// 圧縮用
#define TE template
#define TY typename
#define US using
#define ST static
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return 
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&

// VVV 常設ライブラリは以下に挿入する。

// AAA 常設ライブラリは以上に挿入する。

#define INCLUDE_LIBRARY
#include __FILE__

#endif // INCLUDE_LIBRARY

#endif // INCLUDE_SUB

#endif // INCLUDE_MAIN
0